Log in

Phase evolution of solid-state BaTiO3 powder prepared with the ultrafine BaCO3 and TiO2

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The phase evolution, nucleation, and sintered ceramics of barium titanate (BaTiO3, BT) powder prepared by solid-state synthesis with an ultrafine starting material (27 m2/g of BaCO3 and 190 m2/g of TiO2) were investigated in this study. Surface diffusion between BaCO3 and TiO2 was observed at a relatively low temperature of 400 °C by transmission electron microscopy. Rapid nucleation of the BT and cubic BT phases was observed at 500 °C by x-ray diffraction. The derivative thermogravimetry curve clearly shows a single step of BT formation at 600 °C. In short, pure BT particles with an average particle size of 250 nm and high tetragonality were prepared by solid-state synthesis, which produced X7R ceramics with high dielectric permittivity, high insulation resistance, and a clear core–shell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2.
FIG. 3
FIG. 4.
FIG. 5.
TABLE I
FIG. 6
TABLE II
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C. Pithan, D. Hennings, and R. Waser: Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. Int. J. Appl. Ceram. Technol. 2, 1 (2005).

    Article  CAS  Google Scholar 

  2. H. Kishi, Y. Mizuno, and H. Chazono: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003).

    Article  CAS  Google Scholar 

  3. C.A. Randall: Scientific and engineering issues of the state-of-art and future multilayer ceramic capacitors. J. Ceram. Soc. Jpn. 109, S2 (2001).

    Article  CAS  Google Scholar 

  4. T. Tsurumi, T. Sekine, H. Kakemoto, T. Hoshina, S.M. Nam, H. Yasuno, and S. Wada: Evaluation and statistical analysis of dielectric permittivity of BaTiO3 powders. J. Am. Ceram. Soc. 89, 1337 (2006).

    Article  CAS  Google Scholar 

  5. Y. Mizuno, T. Hagiwara, and H. Kishi: Microstructural design of dielectrics for Ni-MLCC with ultra-thin active layers. J. Ceram. Soc. Jpn. 115, 360 (2007).

    Article  CAS  Google Scholar 

  6. W. Trzebiatowski, J. Wojciechowska, and J. Damm: Mechanism of synthesis of barium titanate. Roczniki Chem. 26, 12 (1952).

    CAS  Google Scholar 

  7. T. Kubo, and K. Shinriki: Chemical reaction in the solid state: III, Reaction between BaCO3 and TiO2 in solid state. J. Chem. Soc. Jpn. 55, 49 (1952).

    CAS  Google Scholar 

  8. T. Kubo, and K. Shinriki: Chemical reaction in the solid state: IV, Interface of moisture and carbon dioxide on formation of various barium titanates. J. Chem. Soc. Jpn. 55, 137 (1952).

    CAS  Google Scholar 

  9. L.K. Templeton, and J.A. Pask: Formation of BaTiO3 from BaCO3 and TiO2 in air and in CO2. J. Am. Ceram. Soc. 42, 212 (1959).

    Article  CAS  Google Scholar 

  10. A. Beauger, J.C. Mutin, and J.C. Niepce: Synthesis reaction of metatitanate BaTiO3. Part 1. Effect of the gaseous atmosphere upon the thermal evolution of the system BaCO3–TiO2. J. Mater. Sci. 18, 3041 (1983).

    Article  CAS  Google Scholar 

  11. A. Beauger, J.C. Mutin, and J.C. Niepce: Synthesis reaction of metatitanate BaTiO3. Part 2. Study of solid-solid reaction interfaces. J. Mater. Sci. 18, 3543 (1983).

    Article  CAS  Google Scholar 

  12. A. Amin, M.A. Spears, and B.M. Kulwicki: Reaction of anatase and rutile with barium carbonate. J. Am. Ceram. Soc. 66, 733 (1983).

    Article  CAS  Google Scholar 

  13. W. Hertl: Kinetics of barium titanate synthesis. J. Am. Ceram. Soc. 71, 879 (1988).

    Article  CAS  Google Scholar 

  14. J.C. Niepce, and G. Thomas: About the mechanism of the solid way synthesis of barium metatitanate. Industrial consequences. Solid State Ionics 43, 69 (1990).

    Article  CAS  Google Scholar 

  15. M. Rössel, H.R. Höche, H.S. Leipner, D. Völtzke, H.P. Abicht, O. Hollricher, J. Müller, and S. Gablenz: Raman microscopic investigations of BaTiO3 precursors with core-shell structure. Anal. Bioanal.Chem. 380, 157 (2004).

    Article  Google Scholar 

  16. K. Kobayashi, T. Suzuki, and Y. Mizuno: Microstructure analysis of solid-state reaction in synthesis of BaTiO3 powder using transmission electron microscope. Appl. Phys. Express 1, 041602 (2008).

    Article  Google Scholar 

  17. T.T. Lee, C.Y. Huang, C.Y. Chang, S.P. Lin, C.Y. Su, C.T. Lee, and M. Fujimoto: Phase evolution and nucleus growth observation of solid-state BaTiO3 powder prepared by high-energy bead milling for raw material mixing. Jpn. J. Appl. Phys. 50, 091502 (2011).

    Google Scholar 

  18. W.S. Lee, D.F.K. Hennings, and T.Y. Tseng: Effect of calcination temperature and A/B-ratio on dielectric properties of (Ba, Ca)(Ti, Zr, Mn)O3 multilayer capacitors with Ni electrodes. J. Am. Ceram. Soc. 83, 1402 (2000).

    Article  CAS  Google Scholar 

  19. D. Hennings, Seriyati B. Schreinemacher, and H. Schreinemacher: Solid–state preparation of BaTiO3-based dielectrics using ultrafine raw materials. J. Am. Ceram. Soc. 84, 2777 (2001).

    Article  CAS  Google Scholar 

  20. C. Ando, R. Yanagawa, H. Chazono, H. Kishi, and M. Senna: Nuclei-growth optimization for fine-grained BaTiO3 by precision-controlled mechanical pretreatment of starting powder mixture. J. Mater. Res. 19, 3592 (2004).

    Article  CAS  Google Scholar 

  21. R. Yanagawa, M. Senna, C. Ando, H. Chazono, and H. Kishi: Preparation of 200 nm BaTiO3 particles with their tetragonality 1.010 via a solid-state reaction preceded by agglomeration-free mechanical activation. J. Am. Ceram. Soc. 90, 809 (2007).

    Article  CAS  Google Scholar 

  22. M.T. Buscaglia, M. Bassoli, V. Buscaglia, and R. Alessio: Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2. J. Am. Ceram. Soc. 88, 2374 (2005).

    Article  CAS  Google Scholar 

  23. M.T. Buscaglia, M. Bassoli, V. Buscaglia, and R. Vormberg: Solid-state synthesis of nanocrystalline BaTiO3: Reaction kinetics and powder properties. J. Am. Ceram. Soc. 91, 2862 (2008).

    Article  CAS  Google Scholar 

  24. D. Hennings, and G. Rosenstein: Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. J. Am. Ceram. Soc. 67, 249 (1984).

    Article  CAS  Google Scholar 

  25. H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imada, Y. Takahashi, H. Ohsato, and T. Kuda: The effect of MgO and rare-earth oxide on formation behavior of core-shell structure in BaTiO3. Jpn. J. Appl. Phys. 36, 5954 (1997).

    Article  CAS  Google Scholar 

  26. C.A. Randall, S.F. Wang, D. Laubscher, J.P. Dougherty, and W. Huebner: Structure property relationships in core-shell BaTiO3–LiF ceramics. J. Mater. Res. 8, 871 (1993).

    Article  CAS  Google Scholar 

  27. T. Wang, X.H. Wang, H. Wen, and L.T. Li: Effect of milling process on the core-shell structures and dielectric properties of fine-grained BaTiO3-based X7R ceramic materials. Int. J. Miner. Metall. Mater. 16, 345 (2009).

    Article  Google Scholar 

  28. D. Hennings: Barium titanate based ceramic materials for dielectric use. Int. J. High Technol. Ceram. 3, 91 (1986).

    Article  Google Scholar 

  29. H. Chazono, and M. Fujimoto: Sintering characteristics and formation mechanisms of ‘core-shell’ structure in BaTiO3-Nb2O5-Co3O5 ternary system. Jpn. J. Appl. Phys. 34, 5354 (1995).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

T-T.L. would like to thank Yageo Corporation for supporting the Ph.D. program. This work was supported by the National Science Council of Taiwan under Contract No. NSC 100-2221-E-006-134-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yuen Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TT., Chang, CY., Huang, CY. et al. Phase evolution of solid-state BaTiO3 powder prepared with the ultrafine BaCO3 and TiO2. Journal of Materials Research 27, 2495–2502 (2012). https://doi.org/10.1557/jmr.2012.255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.255

Navigation