Log in

Influence of microwave photo-excitation on the transport properties of the high mobility GaAs/AlGaAs 2D electron system

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We examined the influence of the microwave power on the diagonal resistance in the GaAs/AlGaAs two dimensional electron system (2DES), in order to extract the electron temperature and determine microwave induced heating as a function of the microwave power. The study shows that microwaves produce a small discernable increase in the electron temperature both at null magnetic field and at finite magnetic fields in the GaAs/AlGaAs 2DES. The heating effect at null field appears greater in comparison to the examined finite field interval, although the increase in the electron temperature in the zero-field limit appears smaller than theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Mani, J.H. Smet, K. von Klitzing, V. Narayanamurti, W.B. Johnson, and V. Umansky, Nature (London) 420, 646 (2002), Phys. Rev. B 69, 193304 (2004); Phys. Rev. Lett. 92, 146801 (2004).

    Article  CAS  Google Scholar 

  2. M.A. Zudov, R.R. Du, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 90, 046807 (2003).

    Article  CAS  Google Scholar 

  3. R.G. Mani, V. Narayanamurti, von K. Klitzing, J.H. Smet, W.B. Johnson, and V. Umansky, Phys. Rev. B 70, 155310 (2004); Phys. Rev. B. 69, 161306 (2004).

    Article  Google Scholar 

  4. A.E. Kovalev, S.A. Zvyagin, C.R. Bowers, J.L. Reno, and J.A. Simmons, Solid State Commun. 130, 379 (2004).

    Article  CAS  Google Scholar 

  5. B. Simovic, C. Ellenberger, K. Ensslin, H.P. Tranitz, and W. Wegscheider, Phys. Rev. B 71, 233303 (2005).

    Article  Google Scholar 

  6. R.G. Mani, Physica E 22, 1 (2004); Physica E 25, 189 (2004); Physica E 40, 1178 (2008); Phys. Rev. B 72, 075327 (2005); Appl. Phys. Lett. 92 102107 (2008); Int. J. Mod. Phys. B 18, 3473 (2007); Appl. Phys. Lett. 91, 132103 (2007); Sol. St. Comm. 144, 409 (2007).

    Article  CAS  Google Scholar 

  7. A.N. Ramanayaka, et al., Phys. Rev. B 83, 165303 (2011); Phys. Rev. B 85, 205315 (2012).

    Article  Google Scholar 

  8. R.G. Mani et al., Sci. Rep. 3, 3478 (2013) DOI:10.1038/srep03478; Sci. Rep. 3, 2747 (2013); DOI: 10.1038/srep02747; Phys. Rev. B 81, 125320 (2010); Phys. Rev. B 37, 4299 (R), (1988); Z. Phys. B 92 335 (1993); Phys. Rev. B 84, 085308 (2011).

    Article  CAS  Google Scholar 

  9. Z. Wang, et al., Sci. Rep. 6, 38516; (2016).

    Article  CAS  Google Scholar 

  10. R.L. Samaraweera, et al., Sci. Rep.7, 5074 (2017).

    Article  CAS  Google Scholar 

  11. H.-C. Liu, et al., J. Appl. Phys. 117, 064306 (2015); Sci. Rep. 8, 7878 (2018) - DOI: 10.1038/s41598-018-26009-z

    Article  Google Scholar 

  12. C.R. Munasinghe, et al., J. Phys.: Condens. Matter 30 315701(2018).

    Google Scholar 

  13. J. Iñarrea and G. Platero, Appl. Phys. Lett. 89, 172114 (2006).

    Article  Google Scholar 

  14. J. Iñarrea, R.G. Mani, and W. Wegscheider, Phys. Rev. B 82, 205321 (2010).

    Article  Google Scholar 

  15. T. Ye et al., Appl. Phys. Lett. 103, 192106 (2013); 102, 242113 (2013).

    Article  Google Scholar 

  16. T. Ye, et al., Phys. Rev. B 89, 155307 (2014); Appl. Phys. Lett. 105, 191609 (2014); Sci.Rep.5, 14880 (2015).

    Article  Google Scholar 

  17. J. Iñarrea, J. Appl. Phys. 113, 183717 (2013).

    Article  Google Scholar 

  18. M.A. Zudov, R.R. Du, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 96, 236804 (2006).

    Article  CAS  Google Scholar 

  19. B. Gunawardana, et al., Phys. Rev. B 95, 195304 (2017).

    Article  Google Scholar 

  20. X.L. Lei and S.Y. Liu, Appl. Phys. Lett. 89, 182117 (2006).

    Article  Google Scholar 

  21. A.C. Durst, S. Sachdev, N. Read, and S.M. Girvin, Phys. Rev. Lett. 91, 086803 (2003).

    Article  Google Scholar 

  22. J. Iñarrea and G. Platero, Phys. Rev. Lett. 94, 016806 (2005).

    Article  Google Scholar 

  23. I.A. Dmitrievet et al., Phys. Rev. B 71, 115316 (2005).

    Article  Google Scholar 

  24. Y.M. Beltukov and M.I. Dyakonov, Phys. Rev. Lett. 116, 176801 (2016).

    Article  CAS  Google Scholar 

  25. O.V. Zhirov, A.D. Chepelianskii, and D.L. Shepelyansky, Phys. Rev. B 88, 035410, (2013).

    Article  Google Scholar 

  26. X.L. Lei and S.Y. Liu, Phys. Rev. B 72, 075345 (2005); Phys. Rev. B 86, 205303 (2012).

    Article  Google Scholar 

  27. X.L. Lei, Materials Science and Engineering: R: Reports (Amsterdam) 70, 126–150 (2010). DOI. 10.1016/j.mser.2010.06.006.

    Article  Google Scholar 

  28. A.D. Chepelianskii, et al., Eur. Phys. J. B 60, 225–229 (2007); Phys. Rev. B 80, 241308(R) (2009)

    Article  CAS  Google Scholar 

  29. L.M. Lifshitz and A.M. Kosevich, J. Phys. Chem. Solids 4, 1 (1958) [Sov. Phys. JETP 4, 173 (1958)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Mani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanayakkara, T.R., Samaraweera, R.L., Kriisa, A. et al. Influence of microwave photo-excitation on the transport properties of the high mobility GaAs/AlGaAs 2D electron system. MRS Advances 4, 3347–3352 (2019). https://doi.org/10.1557/adv.2020.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.30

Navigation