Log in

Method Development for High Temperature In-Situ Neutron Diffraction Measurements of Glass Crystallization on Cooling from Melt

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A glass-ceramic borosilicate waste form is being considered for immobilization of waste streams of alkali, alkaline-earth, lanthanide, and transition metals generated by transuranic extraction for reprocessing used nuclear fuel. Waste forms are created by partial crystallization on cooling, primarily of oxyapatite and powellite phases. In-situ neutron diffraction experiments were performed to obtain detailed information about crystallization upon cooling from 1200°C. The combination of high temperatures and reactivity of borosilicate glass with typical containers used in neutron experiments, such as vanadium and niobium, prevented their use here. Therefore, methods using sealed thick-walled silica ampoules were developed for the in-situ studies. Unexpectedly, high neutron absorption, low crystal fraction, and high silica container background made quantification difficult for these high temperature measurements. As a follow-up, proof-of-concept measurements were performed on different potential high-temperature container materials, emphasizing crystalline materials so that residual glass in the waste form sample could be more easily analyzed. Room temperature measurements were conducted with a pre-crystallized sample in ‘ideal’ containers stable at low temperatures (i.e., vanadium and thin-wall silica capillaries) and compared to the same measurements in containers stable at high temperatures (i.e, platinum, single crystal sapphire, and thick-walled silica ampoules). Results suggested that Pt is probably the best choice if suitably sealed to prevent contamination from the sample after neutron activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.V. Crum, L. Turo, B. Riley, M. Tang and A. Kossoy, J. Am. Ceram. Soc. 95, 1297 (2012).

    Article  CAS  Google Scholar 

  2. J. Crum, V. Maio, J. McCloy, C. Scott, B. Riley, B. Benefiel, J. Vienna, K. Archibald, C. Rodriguez, V. Rutledge, Z. Zhu, J. Ryan and M. Olszta, J. Nucl. Mater. 444, 481 (2014).

    Article  CAS  Google Scholar 

  3. J.V. Crum, J.J. Neeway, B.J. Riley, Z. Zhu, M.J. Olszta and M. Tang, J. Nucl. Mater. 482, 1 (2016).

    Article  CAS  Google Scholar 

  4. J. Neuefeind, M. Feygenson, J. Carruth, R. Hoffmann and K.K. Chipley, Nucl. Instrum. Meth. B 287, 68 (2012).

    Article  CAS  Google Scholar 

  5. L. Cormier, G. Calas, D.R. Neuville and R. Bellissent, J. Non-Cryst. Solids 293–295, 510 (2001).

    Article  Google Scholar 

  6. HOT-001 (2018). Available at: https://neutrons.ornl.gov/sample/item/hot-001 (accessed 14 November 2018)

  7. J.F.C. Turner, S.E. McLain, T.H. Free, C.J. Benmore, K.W. Herwig and J.E. Siewenie, Rev. Sci. Instrum. 74, 4410 (2003).

    Article  CAS  Google Scholar 

  8. V.F. Sears, Neutron News 3, 26 (1992).

    Article  Google Scholar 

  9. O. Arnold, J.C. Bilheux, J.M. Borreguero, A. Buts, S.I. Campbell, L. Chapon, M. Doucet, N. Draper, R. Ferraz Leal, M.A. Gigg, V.E. Lynch, A. Markvardsen, D.J. Mikkelson, R.L. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos, T.G. Perring, P.F. Peterson, S. Ren, M.A. Reuter, A.T. Savici, J.W. Taylor, R.J. Taylor, R. Tolchenov, W. Zhou and J. Zikovsky, Nucl. Instr. Meth. A 764, 156 (2014).

    Article  CAS  Google Scholar 

  10. E.I. Get’man, E.V. Borisova, S.N. Loboda and A.V. Ignatov, Russ. J. Inorg. Chem. 58, 265 (2013).

    Article  Google Scholar 

  11. J. Häglund, A. Fernández Guillermet, G. Grimvall and M. Körling, Phys. Rev. B 48, 11685 (1993).

    Article  Google Scholar 

  12. J. Graham, J. Phys. Chem. Solids 17, 18 (1960).

    Article  CAS  Google Scholar 

  13. D.S. Patil, M. Konale, M. Gabel, O.K. Neill, J.V. Crum, A. Goel, M.C. Stennett, N.C. Hyatt and J.S. McCloy, J. Nucl. Mater. 510, 539 (2018).

    Article  CAS  Google Scholar 

  14. W. Holland and G.H. Beall, Glass Ceramic Technology, 2nd, (Wiley, 2012).

  15. J. McCloy and A. Goel, MRS Bull. 42, 233 (2017).

    Article  CAS  Google Scholar 

  16. D. Caurant, P. Loiseau, O. Majerus, V. Aubin-Chevaldonnet, I. Bardez and A. Quintas, Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes, (Nova Science Publishers, Inc., New York, 2009).

    Google Scholar 

  17. I.W. Donald, B.L. Metcalfe and R.N.J. Taylor, J. Mater. Sci. 32, 5851 (1997).

    Article  CAS  Google Scholar 

  18. I.M. Peterson, Y. Shi, D. Ma, J.L. Rygel, B. Wheaton, P.S. Whitfield, J. Wright and M. Carlineo, https://onlinelibrary.wiley.com/doi/abs/10.1111/jace.15977, (in press).

  19. J.K.R. Weber, C.J. Benmore, L.B. Skinner, J. Neuefeind, S.K. Tumber, G. Jennings, L.J. Santodonato, D. **, J. Du and J.B. Parise, J. Non-Cryst. Solids 383, 49 (2014).

    Article  CAS  Google Scholar 

  20. A. Navrotsky, Science 346, 916 (2014).

    Article  CAS  Google Scholar 

  21. C.J. Benmore, ISRN Mater. Sci. 2012, 19 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCloy, J., Marcial, J., Riley, B. et al. Method Development for High Temperature In-Situ Neutron Diffraction Measurements of Glass Crystallization on Cooling from Melt. MRS Advances 4, 1009–1019 (2019). https://doi.org/10.1557/adv.2019.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.46

Navigation