Log in

Effect of Li, Fe, and B Addition on the Crystallization Behavior of Sodium Aluminosilicate Glasses as Analogues for Hanford High Level Waste Glasses

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Crystallization of aluminosilicates during the conversion of Hanford high-level waste (HLW) to glass is a function of the composition of the glass-forming melt. In high-sodium, highaluminum waste streams, the crystallization of nepheline (NaAlSiO4) removes chemically durable glass-formers from the melt, leaving behind a residual melt that is enriched in less durable components, such as sodium and boron. We seek to further understand the effect of lithium, boron, and iron addition on the crystallization of model silicate glasses as analogues for the complex waste glass. Boron and iron behave as glass intermediates which allow for crystallization when present in low additions but frustrate crystallization in high additions. In this work, we seek to compare the average structures of quenched and heat treated glasses through Raman spectroscopy, X-ray diffraction, vibrating sample magnetometry, and X-ray pair distribution function analysis. The endmembers of this study are feldspathoid-like (LiAlSiO4, NaAlSiO4, NaBSiO4, and NaFeSiO4), pyroxene-like (LiAlSi2O6, NaAlSi2O6, NaBSi2O6, and NaFeSi2O6), and feldspar-like (LiAlSi3O8, NaAlSi3O8, NaBSi3O8, and NaFeSi3O8). Such a comparison will provide further insight on the complex relationship between the average chemical ordering and topology of glass on crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kruger, Advances in Glass formulations for Hanford High-Alumina, High-Iron and Enhanced Sulphate Management in HLW streams – 13000, Department of Energy, Office of River Protection, Richland, WA, ORP-54302-FP (2013).

  2. B.J. Riley, P. Hrma, J. Rosario and J.D. Vienna, In Ceramic Transactions Vol. 132, Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VII, edited by G. L. Smith, S. K. Sundaram and D. R. Spearing, (The American Ceramic Society, Westerville, OH, 2001), pp. 257.

    Google Scholar 

  3. C.M. Jantzen and D.E. Bickford in Scientific basis for Nuclear Waste Management VIII, edited by C. M. Jantzen, J. A. Stone and R. C. Ewing, (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985), pp. 135.

    Google Scholar 

  4. J. Marcial, J. Crum, O. Neill and J. McCloy, Amer. Mineral. 101, 266 (2016).

    Article  Google Scholar 

  5. J. Marcial, J. McCloy and O. Neill in Scientific Basis for Nuclear Wate Management XXXVIII, edited by S. Gin, R. Jubin, J. Matyas and E. Vance, (Proc. Mater. Res. Soc. Symp. 1744, Boston, MA, 2015), pp. 85.

    Google Scholar 

  6. J. McCloy, N. Washton, P. Gassman, J. Marcial, J. Weaver and R. Kukkadapu, J. Non-cryst. Solids 409, 149 (2015).

    Article  CAS  Google Scholar 

  7. J.S. McCloy, C. Rodriguez, C. Windisch, C. Leslie, M.J. Schweiger, B.R. Riley and J.D. Vienna, In Ceramic Transactions, Vol 222, Advances in Materials Science for Environmental and Nuclear Technology, edited by K. M. Fox, E. N. Hoffman, N. Manjooran and G. Pickrell, (John Wiley & Sons, Inc., Hoboken, NJ, 2010), pp. 63.

    Chapter  Google Scholar 

  8. P.B. Rose, D.I. Woodward, M.I. Ojovan, N.C. Hyatt and W.E. Lee, J. Non-cryst. Solids 357, 2989 (2011).

    Article  CAS  Google Scholar 

  9. W.A. Deer, R.A. Howie, W.S. Wise and J. Zussman, Editors, Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites, 2nd ed. (The Geological Society, London, 2004).

    Google Scholar 

  10. In An Introduction to Rock-Forming Minerals, edited by W. A. Deer, R. A. Howie and J. Zussman, (Addison-Wesley Longman, London, 1992), pp. 473.

  11. J. Marcial, J. Kabel, M. Saleh, Y. Shaharyar, A. Goel and J. McCloy, Proc. Waste Manag. Conf. 16323 (2016).

  12. X. Qiu, J.W. Thompson and S.J.L. Billinge, J. Appl. Cryst. 37, 1 (2004).

    Article  Google Scholar 

  13. M. Wojdyr, J. Appl. Cryst. 43, 3 (2010).

    Article  Google Scholar 

  14. J.G. Thompson, R.L. Withers, A. Melnitchenko and S.R. Palethorpe, Acta Cryst. B 54, 531 (1998).

    Article  Google Scholar 

  15. R.L. Withers, J.G. Thompson, A. Melnitchenko and S.R. Palethorpe, Acta Cryst. B 54, 547 (1998).

    Article  Google Scholar 

  16. H.G.F. Winkler, Golden Book of Phase Transitions, Wroclaw 1, 122 (2002).

  17. D. Levy, R. Guistetto and H. Andreas, Phys. Chem. Miner. 39, 8 (2012).

    Article  Google Scholar 

  18. P. Schouwink, L. Dubrovinsky, K. Glazyrin, M. Merlini, M. Hanfland, T. Pip**er and R. Miletich, Am. Mineral. 96, 6 (2011).

    Article  Google Scholar 

  19. M.J. Buerger, G.E. Klein and G.E. Hamburger, Bull. Geol. Soc. Amer. 57, 2 (1946).

    Google Scholar 

  20. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 4 (2011).

    Article  Google Scholar 

  21. M. Taylor and G.E. Brown Jr, Geochim. Cosmochim. Acta 43, 1467 (1979).

    Article  CAS  Google Scholar 

  22. C.M.S. Dan Sykes, J. Geophys. Res. 951, 4 (1990).

    Google Scholar 

  23. D.W. Matson, S.K. Sharma and J.A. Philpotts, Amer. Mineral. 71, 694 (1986).

    CAS  Google Scholar 

  24. E.M. Pierce, L.R. Reed, W.J. Shaw, B.P. McGrail, J.P. Icenhower, C.F. Windisch, E.A. Cordova and J. Broady, Geochim. Cosmochim. Act. 74, 2634 (2010).

    Article  CAS  Google Scholar 

  25. K. Onuma, T. Iwai and Y. Kenzo, J. Fac. Sci., Hokk. U. Ser. 4, Geol. Mineral. 15, 179 (1972).

    CAS  Google Scholar 

  26. J.C.P. de Oliveira, M.I. da Costa Jr., W.H. Schreiner, A. Vasquez, N. Vieira Jr. and A. Roisenberg, J. Magn. Magn. Mater. 75, 5 (1988).

    Article  Google Scholar 

  27. O. Ballet, J.M.D. Coey, G. Fillion, A. Ghose, A. Hewat and J.R. Regnard, Phys. Chem. Miner. 16, 6 (1989).

    Google Scholar 

  28. R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd, Completely Revised and Extended Edition, 2, (John Wiley & Sons, Hoboken, 2003).

    Book  Google Scholar 

  29. M. Ahmadzadeh, A. Ataie and E. Mostafavi, J. Alloys Compd. 622, 9 (2015).

    Article  Google Scholar 

  30. E.V. Sokolova, F.C. Hawthorne and A.P. Khomyakov, Can. Mineral. 39, 159 (2001).

    Article  CAS  Google Scholar 

  31. S.K. Lee and J.F. Stebbins, J. Non-cryst. Solids 270, 260 (2000).

    Article  CAS  Google Scholar 

  32. E.D. Zanotto, J.E. Tsuchida, J.F. Schneider and H. Eckert, Int. Mater. Rev. 60, 16 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcial, J., Ahmadzadeh, M. & McCloy, J.S. Effect of Li, Fe, and B Addition on the Crystallization Behavior of Sodium Aluminosilicate Glasses as Analogues for Hanford High Level Waste Glasses. MRS Advances 2, 549–555 (2017). https://doi.org/10.1557/adv.2016.628

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.628

Navigation