Log in

Polymeric Carbon Dioxide

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO2-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO2-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. COz-V is made of CO4 tetrahedra, analogous to SiO2 polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO2-V. We also present some implications of polymeric CO2 for high-pressure chemistry and new materials synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Yoo, H. Cynn, M. Nicol, submitted (1999).

    Google Scholar 

  2. V. Iota, C.S. Yoo, H. Cynn, Science 283, 1510 (1999).

    Article  CAS  Google Scholar 

  3. C.S. Yoo et al., Phys. Rev. Lett. (1999) in print.

    Google Scholar 

  4. W.L. Vos. L.W. Finger, R.J. Hemley, J.Z. Hu, H.K. Mao, and J.A. Schouten, Nature 358, 46 (1992).

    Article  CAS  Google Scholar 

  5. S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  CAS  Google Scholar 

  6. A.F. Goncharov, V.V. Struzhkin, M.S. Somayazulu, R.J. Hemley, H.K. Mao, Science 273, 218 (1996).

    Article  CAS  Google Scholar 

  7. A.Y. Liu and M.L. Cohen, Science 245, 842 (1989).

    Article  Google Scholar 

  8. C. Mailhiot, L.H. Yang, A.K. McMahan, Phys. Rev. B 56, 140 (1992).

    Google Scholar 

  9. L.J. Parker, T. Atou, J.V. Badding, Science 273, 95 (1996).

    Article  CAS  Google Scholar 

  10. R. van der Meer, A.L. German, and D. Heikens, Poly. Sci. 15, 1765 (1977).

    Google Scholar 

  11. H. Lorenzana; a private communication

  12. K. Aoki, H. Yamawaki, M. Sakashita, Y. Gotoh, and K. Takemura, Science 263, 356 (1994).

    Article  CAS  Google Scholar 

  13. R.D. Etters and K. Bogdan, J. Chem. Phys. 90, 4537 (1989).

    Article  CAS  Google Scholar 

  14. H. Olijnyk and A.P. Jephcoat, Phys. Rev. B 57, 879 (1998).

    Article  CAS  Google Scholar 

  15. The correspondence between the mode frequencies for the two structures can be estimated by considering the ration of the reduced vibrational masses for the symmetric stretching modes in singly bonded C-O-C and Si-O-Si structures. The angle between the two X-O single bonds is chosen to match the bond angle in α-quartz (104.6°). The low frequency limit (398 cm) results from considering isolated structures (X20 molecules) while the upper frequency (491 cm−1) results by considering the second order shell of O atoms moving rigidly with the C (Si).

  16. R.J. Hemley, in High Pressure Research in Mineral Physics, edited by M. H. Manghnani and Y. Syono, pp 347, (Terra Sci. Pub. Co., Tokyo, 1987).

  17. S.K. Sharma, J.F. Mammone, M.F. Nicol, Nature 292, 140 (1981).

    Article  CAS  Google Scholar 

  18. J.D. Jorgensen, J. Appl. Phys. 49, 5473 (1973).

    Article  Google Scholar 

  19. A.K.A. Pryde and M.T. Dove, Phys. Chem. Minerals, 26, 171 (1998).

    Article  CAS  Google Scholar 

  20. R.F. de Dombal and M.A. Carpenter, Eur. J. Mineral 5, 607 (1993) and references therein.

    Article  Google Scholar 

  21. H. Graetsch and O.W. Flirke, Zeitschrift for Kristallographic 195, 31 (1991).

    Article  CAS  Google Scholar 

  22. E. Knittle, “Mineral Physics and Crystallography, a Handbook of Physical Constants” Edited by T. Ahrens, pp 98–142 (AGU, 1995)

  23. Knittle et al., Nature 337, 349 (1989).

    Article  CAS  Google Scholar 

  24. B. Olinger, J. Chem. Phys. 77, 6255 (1982).

    Article  CAS  Google Scholar 

  25. E. Knittle, “Static Compression Measurements of Equation of State” in “Mineral Physics and Crystallography, a Handbook of Physical Constants” Edited by T. Ahrens, pp 98–142 (AGU, 1995) and the references therein.

    Google Scholar 

  26. E. Knittle, R.M. Wentzcovitch, R. Jeanloz, M.L. Cohen, Nature 337, 349 (1989).

    Article  CAS  Google Scholar 

  27. T.J. Driscoll and N.M. Lawandy, J. Opt. Soc. Am. B11, 355 (1994).

    Article  Google Scholar 

  28. Y. Sasaki and Y. Ohmori, Appl. Phys. Lett. 39, 466 (1981).

    Article  CAS  Google Scholar 

  29. In general, the second harmonic of light is generated in non-centrosymmetric crystals; whereas, only odd harmonic are observed in centrosymmetric crystals. This stems from the second order polarization dependence of electromagnetic transitions. In crystals having a center of symmetry, the inversion of all coordinates must leave all relationships between physical quantities unchanged. Because the electric field E is odd under inversion operations, the polarization field P must also be odd, and the coefficients of all even powers in the expansion of the polarization: P = ωoX1, Esin (ωt) + ωoX2E2sin2(ωt) + ωoX3E3sin3(ωt) +… must vanish. In such crystals, only odd multiples of the incident frequency can be generated.

  30. R.W.G. Wyckoff in Crystal Structures, vol 1, 2nd ed., pp 467 (Intersci., New York, 1963).

    Google Scholar 

  31. S.M. Stishov and V. Popova, Geochem, Eng. Trans. 10, 923 (1961).

    Google Scholar 

  32. C.S. Yoo and M.F. Nicol, J. Phys. Chem. 90, 6726 (1986); ibid 90, 6732 (1986).

    Article  CAS  Google Scholar 

  33. A.I. Katz, D. Schiferl, and R.L. Mills, J. Phys. Chem. 88, 3176 (1981).

    Article  Google Scholar 

  34. M. Gauthier, P. Pruzan, J.C. Chervin, and J.M. Besson, Phys. Rev. B 37, 2102 (1988).

    Article  CAS  Google Scholar 

  35. M. Hanfland, R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 70, 3760 (1993).

    Article  CAS  Google Scholar 

  36. Y. Akahama, H. Kawamura, S. Carlson, T. Le Bihan, and D. Hasermann, the abstract in a proceedings to the AIRAPT-17, Hawaii, July 25-30, 1999, p72; also L. Ulivi, R. Bini, F. Gorelli, M. Santoro, ibid, p73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choong-Shik Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, CS. Polymeric Carbon Dioxide. MRS Online Proceedings Library 579, 239–248 (1999). https://doi.org/10.1557/PROC-579-239

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-579-239

Navigation