Log in

Non-Micropipe Dislocations in 4H-SiC Devices: Electrical Properties and Device Technology Implications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

It is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vectors > 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = lc with no hollow core) in densities on the order of thousands per cm 2, nearly 100-fold micropipe densities. While not nearly as detrimental to SiC device performance as micropipes, it has been previously shown that diodes containing elementary screw dislocations exhibit a 5% to 35% reduction in breakdown voltage, higher pre-breakdown reverse leakage current, softer reverse breakdown I-V knee, and concentrated microplasmic breakdown current filaments when measured under DC testing conditions. This paper details the impact of elementary screw dislocations on the experimentally observed reverse-breakdown pulse-failure characteristics of low-voltage (< 250 V) small-area (< 5 × 10-4 cm2) 4H-SiC p+n diodes. The presence of elementary screw dislocations did not significantly affect the failure properties of these diodes when subjected to non-adiabatic breakdown-bias pulsewidths ranging from 0.1 μs to 20 μs in duration. Diodes with and without elementary screw dislocations exhibited positive temperature coefficient of breakdown voltage and high junction failure power densities well above the failure power densities exhibited by highly reliable silicon power rectifiers. This preliminary result, based on measurements from one wafer of SiC diodes, suggests that highly reliable low-voltage SiC rectifiers may be attainable despite the presence of elementary screw dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Neudeck, J. Electron. Mater. 24 (4), 283–288 (1995).

    Article  CAS  Google Scholar 

  2. P. G. Neudeck and J. A. Powell, IEEE Electron Device Lett. 15 (2), 63–65 (1994).

    Article  CAS  Google Scholar 

  3. M. Dudley, S. Wang, W. Huang, C. H. Carter, Jr., and C. Fazi, J. Phys. D 28 A63–A68 (1995).

    Article  CAS  Google Scholar 

  4. S. Wang, M. Dudley, C. H. Carter, Jr., V. F. Tsvetkov, and C. Fazi in Applications of Synchrotron Radiation Techniques to Materials Science, edited by L. Terminello, N. Shinn, G. Ice, K. D’Amico, and D. Perry (Mater. Res. Soc. Proc. 375, Pittsburgh, PA 1995), pp. 281–286.

  5. W. Si, M. Dudley, R. Glass, V. Tsvetkov, and C. H. Carter, Jr., J. Electron. Mater. 26 (3), 128–133 (1997).

    Article  CAS  Google Scholar 

  6. W. Si and M. Dudley in Silicon Carbide. III-Nitrides. and Related Materials, edited by G. Pensl, H. Morkoc, B. Monemar, and E. Janzen (Materials Science Forum 264–268, Trans Tech Publications, Switzerland 1998), pp. 429–432.

  7. S. Wang, M. Dudley, C. H. Carter, Jr., and H. S. Kong in Diamond. SiC and Nitride Wide Bandgap Semiconductors, edited by C. H. Carter, Jr., G. Gildenblat, S. Nakamura, and R. J. Nemanich (Mater. Res. Soc. Proc. 339, Pittsburgh, PA 1994), pp. 735–740.

  8. J. A. Powell, D. J. Larkin, P. G. Neudeck, J. W. Yang, and P. Pirouz in Silicon Carbide and Related Materials, edited by M. G. Spencer, R. P. Devaty, J. A. Edmond, M. A. Kahn, R. Kaplan, and M. Rahman (Institute of Physics Conference Series 137, Bristol, UK 1994), pp. 161–164.

  9. V. F. Tsvetkov, R. C. Glass, D. Henshall, D. A. Asbury, and C. H. Carter, Jr., in Silicon Carbide, III-Nitrides. and Related Materials, edited by G. Pensl, H. Morkoc, B. Monemar, and E. Janzen (Materials Science Forum 264–268, Trans Tech Publications, Switzerland 1998), pp. 3–8.

  10. P. G. Neudeck, W. Huang, and M. Dudley to appear in Power Semiconductor Materials and Devices, edited by S. J. Pearton, R. J. Shul, E. Wolfgang, F. Ren, and S. Tenconi (Mater. Res. Soc. Proc. 483, Warrandale, PA, 1998).

  11. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley-Interscience, New York, 1981, pp. 169–175.

    Google Scholar 

  12. B. J. Baliga, Modem Power Devices Wiley-Interscience, New York, 1987, pp. 314–318.

    Google Scholar 

  13. L. W. Ricketts, J. E. Bridges, and J. Miletta, EMP Radiation and Protective Techniques, Wiley, New York, 1976.

    Google Scholar 

  14. R. N. Ghose, EMP Environment and System Hardness Design, D. White Consultants, Gainesville, VA, 1984, pp. 4.1–4.31.

    Google Scholar 

  15. D. C. Wunsch and R. R. Bell, IEEE Trans. Nucl. Sci. 15 (6), 244–259 (1968).

    Article  Google Scholar 

  16. A. Zywietz, K. Karch, and F. Bechstedt, Physical Review B 54 (3), 1791–1798 (1996).

    Article  CAS  Google Scholar 

  17. C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York, 1986, pp. 99–122.

    Google Scholar 

  18. G. A. Slack, J. Appl. Phys. 35 (12), 3460 (1964).

    Article  CAS  Google Scholar 

  19. P. G. Neudeck and C. Fazi, J. Appl. Phys. 80 (2), 1219–1225 (1996).

    Article  CAS  Google Scholar 

  20. FluorinertTM, 3M Company, St. Paul, MN 55144.

  21. G. Gradinaru, V. P. Madangarli, and T. S. Sudarshan, IEEE Trans. Electron Devices 41 (7), 1233–1238 (1994).

    Article  CAS  Google Scholar 

  22. P. G. Neudeck, D. J. Larkin, J. A. Powell, L. G. Matus, and C. S. Salupo, Appl. Phys. Lett. 64 (11), 1386–1388 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neudeck, P.G., Huang, W., Dudley, M. et al. Non-Micropipe Dislocations in 4H-SiC Devices: Electrical Properties and Device Technology Implications. MRS Online Proceedings Library 512, 107–112 (1998). https://doi.org/10.1557/PROC-512-107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-512-107

Navigation