Log in

Fiber Coatings and the Fracture Behavior of a Continuous Fiber Ceramic Composite

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Fiber coatings have been used to modify fiber-matrix interfacial forces, and thus control mechanical properties of continuous fiber ceramic composites. It has been shown that the properties and thickness of the interlayer influence composite properties such as matrix cracking and ultimate strength, toughness and interlaminar shear. The effects of fiber coating properties and thickness on fiber-reinforced SiC matrix composites fabricated employing CVI techniques have been examined. Correlations between interface condition, mechanical properties and failure mechanisms have been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Lowden, “Fiber Coatings and the Mechanical Properties of a Fiber-Reinforced Ceramic Composite,” pp. 619–630 in Ceramic Transactions, Vol.19, Advanced Composite Materials, ed. by Michael D. Sacks, The American Ceramic Society, Westerville, Ohio (1991).

    CAS  Google Scholar 

  2. R. A. Lowden, “Interface Effects and Fracture in Nicalon/SiC Composites,” pp.97–114 in the Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ed. by R. Judkins, Oak Ridge, TN, May 15–17, 1990.

  3. R. A. Lowden, Characterization and Control of the Fiber-Matrix Interface in Ceramic Matrix Composites, ORNL/TM-11039, March 1989.

    Book  Google Scholar 

  4. R. A. Lowden and D. P. Stinton, “Interface Modification in Nicalon/SiC Composites,”Ceram. Eng. Sci. Proc. 9, 705–722 (1989).

    Article  Google Scholar 

  5. R. A. Lowden and D. P. Stinton, The Influence of the Fiber-matrix Bond on the Mechanical Behavior of Nicalon/SiC Composites, ORNL/TM-10667, December 1987.

    Google Scholar 

  6. C. H. Hsueh, P. F. Becher, and P. Angelini, “Effects of Interfacial Films on Thermal Stresses in Whisker-Reinforced Ceramics,” J. Am. Ceram. Soc. 71(11), 929–933 (1988).

    Article  CAS  Google Scholar 

  7. C. H. Hsueh, “Analytical Evaluation of Interfacial Shear Strength for Fiber-Reinforced Ceramic Composites,” J. Am. Ceram. Soc. 71(6), 490–93 (1988).

    Article  CAS  Google Scholar 

  8. E. Lara-Curzio, M. K. Ferber, and R. A. Lowden, “The Effects of Fiber Coating Thickness on the Interfacial Properties of a Continuous Fiber Ceramic Matrix Composite,” Unpublished, 1994

    Book  Google Scholar 

  9. D. P. Stinton, A. J. Caputo, and R. A. Lowden, “Synthesis of Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration,” Am. Ceram. Soc. Bull. 65(2), 347–50 (1986).

    CAS  Google Scholar 

  10. D. P. Stinton, W. J. Lackey, R. J. Lauf, and T. M. Besmann, “Fabrication of Ceramic-Ceramic Composites by Chemical Vapor Deposition,” Ceram. Eng. Sci. Proc. 5, 668–76 (1984).

    Article  CAS  Google Scholar 

  11. T. M. Besmann, B. W. Sheldon, R. A. Lowden, and D. P. Stinton, “Vapor Phase Fabrication and Properties of Continuous-Filament Ceramic Composites,” Science 253, 1104 (1991).

    Article  CAS  Google Scholar 

  12. A. J. Caputo and W. J. Lackey, “Fabrication of Fiber-Reinforced Composites by Chemical Vapor Infiltration,” Ceram. Eng. Sci. Proc. 5, 654–67 (1984).

    Article  CAS  Google Scholar 

  13. M. Bouquet, J. M. Bribis, and J. M. Quenisset, “Toughness Assessment of Ceramic Matrix Composites,” Composites Science and Technology 37, 223–248 (1990).

    Article  Google Scholar 

  14. H. H. Moeller, “Determining Fracture Toughness Using The Chevron Notch Technique,” unpublished (1991).

    Google Scholar 

  15. D. G. Munz, J. L. Shannon jr., and R. T. Bibsey, “Fracture Toughness Calculation from Maximum Load in Four Point Flexure Tests of Chevron Notch Specimens,” Int. J. Fracture February (1980).

    Google Scholar 

  16. T. T. Shih, “Chevron V-Notch Bend Specimen for Klc, Measurement of Brittle Materials,” J. Testing and Evaluation, 9 (1) 50–55 (1981).

    Article  Google Scholar 

  17. J. C. Newman, “A Review of Chevron-Notched Fracture Specimens,” Chevron-Notched Specimens: Testing and Stress Analysis, ASTM STP 855, J. H. Underwood, S. W. Freiman, and F. I. Baratta, Eds., American Society for Testing and Materials, Philadelphia, 1984, pp.5–31.62.

    Chapter  Google Scholar 

  18. M. G. Jenkins, A. S. Kobayashi, K. W. White, and R. C. Brandt, “A 3-D Finite Element Analysis of a Chevron Notched, Three Point Bend Fracture Specimen for Ceramic Materials,”International Journal of Fracture 34:281–295 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.H., Lowden, R.A. & Liaw, P.K. Fiber Coatings and the Fracture Behavior of a Continuous Fiber Ceramic Composite. MRS Online Proceedings Library 365, 403–410 (1994). https://doi.org/10.1557/PROC-365-403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-365-403

Navigation