Log in

A New Mechanism for Lubrication in Liquid Crystals

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Recent synchrotron X-ray scattering studies on the thermotropic liquid crystal lubricant 8CB under shear flow have shown that for high shear rates the smectic layers are oriented perpendicular to the orientation assumed by conventional solid layered lubricants. This result invalidates existing theories of the lubrication mechanism of these materials. We show that the new orientation is the result of flow deformation of thermal fluctuations. This same mechanism is found to create a “normal stress” lift-force which we propose as the new lubrication mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cameron, Basic Lubrication Theory (Ellis Horwood Ltd, and J. Wiley (1976))

    Google Scholar 

  2. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 1970)

    Google Scholar 

  3. P.G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, London, 1974).

    Google Scholar 

  4. T. E. Fischer, S. Bhattacharya, R. Salher, J. L. Lauer, and Y-J. Ann, STLE TRIBOLOGY TRANSACTIONS, 31, 442 (1988); J. L. Lauer, Y. J. Ahn, and T. E. Fischer, in “Tribology and the Liquid-Crystalline State”, ACS symposium series 441, (Washington, DC 1990).

    Article  CAS  Google Scholar 

  5. P. Oswald and M. Kleman, J. Phys. Lett. (Paris), 43, L–411 (1982)

    Article  Google Scholar 

  6. C.R. Safinya, E.B. Sirota, R.F. Bruinsma, C. Jeppesen, R.J. Plano, and L.J. Wenzel, Science (submitted).

  7. R. G. Horn and M. Kleman, Ann. Phys., 3, 229 (1978).

    Article  CAS  Google Scholar 

  8. R. Ribotta and G. Durand, J. Physique 38, 179 (1977).

    Article  CAS  Google Scholar 

  9. C.R. Safinya, E.B. Sirota, R. Plano, and R. Bruinsma, J. Phys.C 2, SA365 (1990); C.R. Safinya, E.B. Sirota, and R. Plano, Phys. Rev. Lett. 66, 1986 (1991).

    CAS  Google Scholar 

  10. R. F. Bruinsma and C. R. Safinya, Phys. Rev. A, 43, 5377 (1991).

    Article  CAS  Google Scholar 

  11. J. L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960); F. M. Leslie, Quart. J. Mech. Appl. Math. 19, 357 (1966); O. Parodi, J. Phys. (Paris) 31, 581 (1970).

    Article  Google Scholar 

  12. W. L. McMillan, Phys. Rev. A 9, 1720 (1974); F. Janig and F. Brochard, J. Phys. (Paris) 35, 301 (1974).

    Article  Google Scholar 

  13. P Pieranski and E. Guyon, Phys. Rev. Lett. 32, 924 (1974); K. Skarp et. al. Mol. Cryst. Liq. Cryst. 66, 199 (1981)

    Article  CAS  Google Scholar 

  14. See for instance: D.J. Evans, H.J.M. Hanley, and S. Hess, Physics Today 37 (1), 26 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge useful discussions with Jacques Prost, Tom Lubensky, Didier Roux, Shobo Bhattacharya, Tom Witten, and Ron Larson, Jacob Israelachvili. C. R. Safinya was supported in part by (1) the MRL Program of the National Science Foundation at UCSB under Award No. DMR-9123048, and (2) by the Office of Navel Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruinsma, R.F., Safinya, C.R. A New Mechanism for Lubrication in Liquid Crystals. MRS Online Proceedings Library 290, 3 (1992). https://doi.org/10.1557/PROC-290-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-290-3

Navigation