Log in

Properties of Ultrathin Amorphous Silicon Nitride Films on III-V Semiconductors

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Properties of ultrathin (~ 10nm) silicon nitride films on single crystal Si, InP and GaAs have been studied using Raman spectroscopy, medium energy ion scattering (MEIS), variable-energy positron annihilation spectroscopy and x-ray photoelectron spectroscopy (XPS). The silicon nitride films were prepared by remote microwave plasma chemical vapour deposition (RPCVD). The results showed that oxidation of the film due to air exposure was restricted to the near surface with an oxygen penetration depth no greater than 2 nm. The residual stress in the as-grown films was substrate-dependent. For films on Si(100), the film induced residual stress was compressive with a value of 0.5GPa. Annealing at 500°C for 60 minutes resulted in a complete release of the residual stress. Vacuum annealing at a temperature below 500°C also led to changes of the electrical properties in the films but not the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson, Phil. Mag. B63, 47(1991).

    Article  Google Scholar 

  2. V.J. Kapoor, and K.T. Hankins eds., Silicon nitride and silicon dioxide thin insulating films, (Electrochemical Society, Pennington, 1987).

    Google Scholar 

  3. F.H.P.M. Habraken ed., Low pressure chemical vapor deposited silicon oxynitride films, material and application, (Springer, Heidelberg, 1991).

    Google Scholar 

  4. I. De Wolf, J. Vanhellemont, A. R-Rodriguez, H. Horstrom, and H.E. Maes, J. Appl. Phys. 71, 898(1992).

    Article  Google Scholar 

  5. R.A. Hakvoort, H. Schut, A. Veen, W.M.A. Bik, and F.H.P.M. Habraken, Appl. Phys. Lett. 59, 1687(1991).

    Article  CAS  Google Scholar 

  6. C.W. Pearce, R.F. Fetcho, M.D. Gross, R.F. Koefer, and R.A. Pudliner, J. Appl. Phys. 71, 1838(1992).

    Article  CAS  Google Scholar 

  7. Y. Okada, S-I. Nakajima, Appl. Phys. Lett. 59, 1066(1991).

    Article  CAS  Google Scholar 

  8. E.C. Paloura, S. Logothetidis, S. Boultadakis, and S. Ves, Appl. Phys. Lett. 59, 280(1991); E.C. Paloura, J. Lagowski, and H.C. Gatos, J. Appl. Phys. 69, 3995(1991).

    Article  CAS  Google Scholar 

  9. K. Domansky, D. Petelenz, and J. Janata, Appl. Phys. Lett. 60, 2074(1992).

    Article  CAS  Google Scholar 

  10. R.S. Bhattacharya, and P.H. Holloway, Appl. Phys. Lett. 38, 545(1981).

    Article  CAS  Google Scholar 

  11. D. Landheer, W. Kwok, and W.M. Lau, (to be published).

  12. L.J. Huang, and W.M. Lau, Appl. Phys. Lett. 60, 1108(1992), and references therein.

    Google Scholar 

  13. D. Landheer, N.G. Skinner, T.E. Jackman, D.A. Thompson, J.G. Simmons, D.V. Stevanovic, and D. Khatamain, J. Vac. Sci. Technol. A9, 2594(1991).

    Article  Google Scholar 

  14. M. Vos and I.V. Mitchell; Phys. Rev. B46, XXX(1992); Nucl. Instrum. Method B, (1992). at press.

    Google Scholar 

  15. P.J. Schultz, Nucl. Instrum. Methods B30, 94(1988).

    Article  CAS  Google Scholar 

  16. L.J. Huang, W.M. Lau, P.J. Simpson, and P.J. Schultz, Phys. Rev. B46, 4086 (1992).

    Article  Google Scholar 

  17. R.N.S. Sodhi, W.M. Lau, and S.I.J. Ingrey, J. Vac. Sci.Technol. A7, 663(1989).

    Article  Google Scholar 

  18. W.K. Chu, J.W. Mayer, and M-A. Nicolet, Backscattering spectrometry, (Academic Press, New York, 1978).

    Book  Google Scholar 

  19. L.J. Huang, R.W.M. Kwok, W.M. Lau, H.T. Tang, W.N. Lennard, I.V. Mitchell, P.J. Schultz, Appl. Phys. Lett. 63(2) (1993), at press.

    Google Scholar 

  20. J. Menendez and M. Cardona, Phys. Rev. B29, 2051(1984).

    Article  Google Scholar 

  21. B. Bendow, H.G. Lipson, and S.P. Yukon, Phys. Rev. B16, 2684(1977).

    Google Scholar 

  22. S.S. Mitra, and N.E. Massa, in Band theory and transport properties, ed. by W. Paul (North-Holland, Amsterdam, 1982) p. 81.

  23. Details of the measurement and interpretation of W parameters, which are related to the width of the annihilation gamma-ray lineshape, can be found in various other publications, including reference 9, 15 & 16 above.

  24. L. Wei, Y. Tabuki, H. Konda, S. Tanigawa, J. Appl. Phys. 70, 7543(1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada, Surface Science Western, the Ontario Center for Materials Research and from the Canadian Network of Centres of Excellence in Molecular and Interfacial Dynamics.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L.J., Kwok, R.W.M., Lau, W.M. et al. Properties of Ultrathin Amorphous Silicon Nitride Films on III-V Semiconductors. MRS Online Proceedings Library 284, 595–600 (1992). https://doi.org/10.1557/PROC-284-595

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-284-595

Navigation