Log in

Miicrostructural Evolutiion Duriing Sinteriing

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Small-angle scattering techniques have been used in a number of studies to characterize pore evolution in ceramic compacts. Parameters characterizing the pore distribution, such as total pore surface area, pore size, and pore density, have been measured through both intermediate and final stage sintering. A review of these results indicates that pore sizes were generally found to remain constant during intermediate-stage sintering; supporting a topological decay model of sintering. Pore sizes generally increased and the size distribution broadened during final-stage sintering. The scattering results also suggest the presence of a unique pore surface area versus density curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. frans. AIME, 185, 169 (1949).

    Google Scholar 

  2. R.L. Coble, J. Am. Ceram. Soc., 41, 55 (1958).

    Article  CAS  Google Scholar 

  3. D.L. Johnson, J. Appl. Phys., 40, 192 (1969); J. Am. Ceram. Soc., 53, 574 (1970).

  4. R.L. Eadie, G.C. Weatherly, and K.T. Aust, Acta Metall., 26, 759 (1978).

    Article  CAS  Google Scholar 

  5. E. Arzt, Acta Metall., 30, 1883 (1982).

    Article  CAS  Google Scholar 

  6. J.W. Ross, W.A. Miller, and G.C. Weatherly, Acta Metall., 20, 203 (1982).

    Article  Google Scholar 

  7. G.C. Kuczynski, Sintering and Related Phenomena (Plenum Press, New York, 1975), p. 217.

    Google Scholar 

  8. F. Glodeanu, I.V. Nicolaescu, and A.M. Aszodi, J. Nucl. Mater., 114, 98 (1983).

    Article  CAS  Google Scholar 

  9. G.N. Hassold, I.-W. Chen, and D.J. Srolovitz, J. Am. Ceram. Soc., 23, 2857 (1990).

    Article  Google Scholar 

  10. G. Kostorz, Treatise on Materials Science and Technology. Vol. 14. Neutron Scattering (Academic Press, New York, 1979), p. 227.

    Google Scholar 

  11. J.R. Weertman, in Nondestructive Evaluation: Microstructural Characterization and Reliability Strategies, edited by O. Buck and S.M. Wolf (AIME, New York, 1981), p. 147.

    Google Scholar 

  12. A. Guinier, Ann. Phys. Paris, 12, 161 (1939).

    Article  CAS  Google Scholar 

  13. G. Porod, Kolloid Z., 125, 51 (1952).

    Article  CAS  Google Scholar 

  14. J.G. Barker and J.R. Weertman, Scripta Metall., 24, 227 (1990).

    Article  CAS  Google Scholar 

  15. N.F. Berk and K.A. Hardman-Rhyne, J. Appl. Cryst., 18, 467 (1985); Physica 136B, 218 (1986).

    Article  CAS  Google Scholar 

  16. R.A. Page, S. Spooner, W.B. Sanderson, and D.L. Johnson, J. Am. Ceram. Soc., 71, 1125 (1988).

    Article  CAS  Google Scholar 

  17. K.A. Hardman-Rhyne and N.F. Berk, J. Am. Ceram. Soc., 69, C–285 (1986).

    Article  Google Scholar 

  18. K.A. Hardman-Rhyne, K.A. Frase, and N.F. Berk, Physica, 136B, 223 (1986).

    Google Scholar 

  19. S. Krueger, G.G. Long, and R.A. Page, Mater. Res. Soc. Sym. Proc., 166, 61 (1990); Acta Cryst. (Part A), (in press).

    Article  CAS  Google Scholar 

  20. G.G. Long, S. Krueger, and R.A. Page, J. Am. Ceram. Soc., 74, 1578 (1991).

    Article  CAS  Google Scholar 

  21. G.G. Long, S. Krueger, R.A. Gerhardt, and R. A. Page, J. Mater. Res. (in press).

  22. G.G. Long and S. Krueger, J. Appl. Cryst., 22, 539 (1989).

    Article  CAS  Google Scholar 

  23. S. Krueger, G.G. Long, D.R. Black, D. Minor, P.R. Jemian, G.W. Nieman, and R.A. Page, J. Am. Ceram. Soc., (in press).

  24. W. Wagner, R.S. Averback, H. Hahn, W. Petry and A. Wiedenman, J. Mater. Res., 6, 2193 (1991).

    Article  CAS  Google Scholar 

  25. R.A. Page, Y.M. Pan, C.R. Blanchard, and S. Spooner, unpublished research.

  26. T. Kimura, Y. Matsuda, M. Oda, and T. Yamaguchi, Ceram. Int., 13, 27 (1987).

    Article  CAS  Google Scholar 

  27. M.A. Occhionero and J.W. Halloran, in Sintering and Heterogeneous Catalysis, edited by G.C. Kuczynksi, A.E. Miller, and G.A. Sargent (Plenum Press, New York, 1984), p. 89.

    Google Scholar 

  28. O.J. Whittemore, Jr. and J.J. Sipe, Powder Technol., 9, 159 (1974).

    Article  CAS  Google Scholar 

  29. K.A. Asaga, M. Daimon, R. Kondo, and K. Hamano, in Factors in Densification and Sinterine of Oxide and Non-Oxide Ceramics, edited by S. Somiya and S. Saito (Association for Science Documents Information, Tokyo, 1979), p. 136.

    Google Scholar 

  30. R.T. DeHoff, R.A. Rummel, H.P. LaBuff, and F.N. Rhines, in Modem Developments in Powder Metallurgy, Vol. 1, edited by H.H. Hausner (Plenum Press, New York, 1966), p. 310.

    Chapter  Google Scholar 

  31. F.N. Rhines and R.T. DeHoff, in Sintering and Heterogeneous Catalysis, edited by G.C. Kuczynski, A.E. Miller, and G.A. Sargent (Plenum Press, New York, 1984), p. 49.

    Google Scholar 

  32. N.J. Shaw and R.J. Brook, J. Am. Ceram. Soc., 69, 107 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The preparation of this manuscript was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG05-84ER45063.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, R.A., Pan, Y.M. Miicrostructural Evolutiion Duriing Sinteriing. MRS Online Proceedings Library 249, 449–458 (1991). https://doi.org/10.1557/PROC-249-449

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-249-449

Navigation