Log in

LASER-ASSISTED CHEMICAL VAPOR DEPOSITION OF CARBON COATED COBALT NANOPARTICLES

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Carbon coated nanoparticles were synthesized by laser-assisted (ArF excimer laser, λ = 193 nm) chemical vapor deposition (LCVD). The particles were formed in the gas-phase by photolytic dissociation of cobaltocene in argon and the particles were deposited onto a silicon substrate. The particles were deposited at two different laser fluencies, 70 and 300 mJ/cm2.

Single crystalline spherical cobalt particles with a well-defined carbon shell were observed by transmission electron microscopy (TEM) for the highest fluence, 300 mJ/cm2. The metallic nucleus phase were identified as either β-Co or Co3O4. Polycrystalline particles were deposited at 70 mJ/cm2, these particles contained α-Co, β-Co, CoO and Co3O4. The particles deposited at 300 mJ/cm2 were log-normally distributed and the total diameter had a mean geometric size of 25 nm while the nuclei had a mean diameter of 10 nm. X-ray photoelectron spectroscopy (XPS) measurements showed that the particles had a carbon content roughly ten times the amount of cobalt. Sputtering showed that both cobalt oxide and metallic cobalt was present. HRTEM micrographs of the particles revealed that only one phase was present in the whole nucleus, proving the nuclei were either oxide or metallic. Raman spectroscopy showed that that the carbon shell contained mostly amorphous carbon. Small domains of carbon of more graphitic character was embedded in the amorphous carbon shell in the 300 mJ/cm2 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cao, Nanostructures and nanomaterials, synthesis, properties and applications, Imperial college press, (2004).

  2. S. P. Gubin, Yu. A. Koksharov, Inorg. Mater. 38 1085–1099 (2002).

    Article  CAS  Google Scholar 

  3. K. Elihn, F. Otten, M. Boman, P. Heszler, F. E. Kruis, H. Fissan, J.-O. Carlsson, Appl. Phys. A 72, 29–34 (2001).

    Article  CAS  Google Scholar 

  4. P. Heszler, K. Ehlin, M. Boman, J.-O. Carlsson. Appl. Phys. A 70, 613–616 (2000).

    CAS  Google Scholar 

  5. K. Ehlin, L. Landström, P. Heszler, Appl. Surf. Sci. 186 573–577 (2002).

    Article  Google Scholar 

  6. P. Heszler, K. Ehlin, L. Landström, M. Boman, Smart Mater. Struct. 11(5) 631–639 (2002).

    Article  CAS  Google Scholar 

  7. L. Landström, K. Ehlin, M. Boman, C. G. Granqvist, P. Heszler, Appl. Phys. A. 81(4), 827–833 (2005).

    Article  Google Scholar 

  8. B. Kalska, J. J. Paggel, P. Fumagalli, M. Hilgendorff, M. Giersig, J. Appl. Phys, 92 (21), 7481–7485 (2002).

    Article  CAS  Google Scholar 

  9. X. L. Dong, C. J. Choi, B. K. Kim, Scripta Mater. 47 857–861 (2002).

    Article  CAS  Google Scholar 

  10. O. Kitakami, H. Sato, Y. Shimada, F. Sato, M. Tanaka, Phys. Rev. B: Condens. Matter. 56 (21) 13849–13854 (1997).

    Article  CAS  Google Scholar 

  11. H. Hayashi, T. Ohno, S. Yatsuya, R. Uyeda, Jpn. J. Appl. Phys. 16(5) 705–717 (1977).

    Article  CAS  Google Scholar 

  12. E. Cattaruzza, G. Battaglin, P. Canton, C. de Julián Fernández, M. Ferroni, T. Finotto, C. Maurizio, C. Sada, J. Non-Cryst. Solids. 336 148–152 (2004).

    Article  CAS  Google Scholar 

  13. C. Petit, Z. L. Wang, M. P. Pileni, J. Phys. Chem B. 109 15309–15316 (2005).

    Article  CAS  Google Scholar 

  14. J.-M. Bonard, S. Seraphin, J.-E. Wegrowe, J. Jiao, A. Châtelain, Chem. Phys. Lett. 343 251–257 (2001).

    Article  CAS  Google Scholar 

  15. J. Jiao, S. Seraphin, J. Appl. Phys. 83 (5) 2442–2448 (1998).

    Article  CAS  Google Scholar 

  16. X.-C. Sun, J. Reyes-Gagsa, X. L. Dong. Mol. Phys. 100 (19) 3147–3150 (2002).

    Article  CAS  Google Scholar 

  17. E. Flahaut, F. Agnoli, J. Sloan, C. O´Connor, M. L. H. Green, Chem. Mater. 14 2553–2558 (2002).

    Article  CAS  Google Scholar 

  18. D. Nishide, H Kataura, S. Suzuki, S. Okubo, Y. Achiba, Chem. Phys. Lett. 392 309–313 (2004).

    Article  CAS  Google Scholar 

  19. K. Schulmeister, J. G. Lunney, B. Buckley, J. Appl.Phys, 72 (8) 3480–3484 (1992)

    Article  CAS  Google Scholar 

  20. Y.-G. Kim, D. Byun, C. Hutchings, P. A. Dowben, J. Appl.Phys, 70 (10) 6062–6064 (1992)

    Article  Google Scholar 

  21. S.-D. Hwang, Y.-G. Kim, C. Wu, P. A. Dowben, Mater. Sci. Eng., B 20 L1–L4 (1993)

    Article  Google Scholar 

  22. M. Oku, Y. Sato, Appl. Surf. Sci. 55 37–41 (1992).

    Article  CAS  Google Scholar 

  23. V.M Jiménez, A. Fernández, J.P. Espinós, A.R. González-Elipe, J. Electron. Spectrosc. Relat. Phenom., 71 61–71 (1995)

    Article  Google Scholar 

  24. L. Landstrom, J. Kokavecz, J. Lu, P. Heszler; J. Appl.Phys, 95 (8) 4408–4414 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alm, O., Carlsson, JO. & Boman, M. LASER-ASSISTED CHEMICAL VAPOR DEPOSITION OF CARBON COATED COBALT NANOPARTICLES. MRS Online Proceedings Library 901, 903 (2005). https://doi.org/10.1557/PROC-0901-Ra09-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0901-Ra09-03

Navigation