Log in

Crystallization of Cu60Ti20Zr20 metallic glass with and without pressure

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Structural stability of a Cu60Ti20Zr20 metallic glass under pressure up to 4.5 GPa was investigated by x-ray diffraction. The sample exhibited a supercooled liquid region of 33 K and a ratio of the glass-transition temperature to the liquidus temperature of 0.63. The glass crystallized in two-step transformation processes in the pressure range of 0–4.5 GPa; the first was a primary reaction to form a Cu51Zr14-type structure crystalline phase with a spacing group P6/m (175) and lattice parameters a=11.235 Å and c=8.271 Å, and then the residual amorphous phase crystallized into a MgZn2-type structure crystalline phase with a spacing group P63/mmc (194) and lattice parameters a=5.105 Å and c=8.231 Å. Both crystallization temperatures increased with pressure having a slope of 19 K/GPa. The increase of the first crystallization temperature with increasing pressure in the glass can be explained by the suppression of atomic mobility. No significant structural change was detected in the Cu60Ti20Zr20 glass annealed in vacuum at 697 K for 1 h as compared to the as-prepared sample from x-ray diffraction measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Chen, Acta Metall. 22, 1505 (1974); A.J. Drehman, A.L. Greer, and D. Turnbull, Appl. Phys. Lett. 41, 716 (1982); H.W. Kui, A.L. Greer, and D. Turnbull, Appl. Phys. Lett. 45, 615 (1984); A. Inoue, N. Nishiyama, and T. Watsuda, Mater. Trans. JIM 37, 181 (1996).

    Article  CAS  Google Scholar 

  2. M.C. Lee, J.M. Kendall, and W.L. Johnson, Appl. Phys. Lett. 40, 383 (1982).

    Google Scholar 

  3. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM 30, 965 (1989).

    Article  CAS  Google Scholar 

  4. A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, Mater. Trans. JIM 32, 609 (1991).

    Article  CAS  Google Scholar 

  5. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM 31, 177 (1990).

    Article  CAS  Google Scholar 

  6. A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  7. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, Mater. Lett. 19, 131 (1994).

    Article  CAS  Google Scholar 

  8. A. Inoue and G.S. Gook, Mater. Trans. JIM 36, 1180 (1995).

    Article  CAS  Google Scholar 

  9. X.M. Wang and A. Inoue, Mater. Trans. JIM 41, 539 (2000).

    Article  CAS  Google Scholar 

  10. T. Itoi and A. Inoue, Mater. Trans. JIM 41, 1256 (1999).

    Article  Google Scholar 

  11. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Mater. Trans. JIM 42, 1149 (2001).

    Article  CAS  Google Scholar 

  12. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Acta Mater. 49, 2645 (2001).

    Article  CAS  Google Scholar 

  13. J.Z. Jiang, J.S. Olsen, L. Gerward, S. Abdali, J. Eckert, N. Schlorke-de Boer, L. Schultz, J. Truckenbrodt, and P.X. Shi, J. Appl. Phys. 87, 2664 (2000).

    Article  CAS  Google Scholar 

  14. D.L. Decker, J. Appl. Phys. 42, 3239 (1971).

    Article  CAS  Google Scholar 

  15. X.D. Liu, M. Nagumo, and M. Umemoto, Mater. Sci. Eng. A 252, 179 (1998).

    Article  Google Scholar 

  16. C.C. Hays and S.C. Glade, Appl. Phys. Lett. 80(10), 3096 (2002).

    Article  CAS  Google Scholar 

  17. For example, see W.L. Johnson, MRS Bulletin 24, 42 (1999).

    Article  CAS  Google Scholar 

  18. J.Z. Jiang, T.J. Zhou, H.K. Rasmussen, U. Kuhn, J. Eckert, and C. Lathe, Appl. Phys. Lett. 77, 3553 (2000).

    Article  CAS  Google Scholar 

  19. S. Linderoth, N. Pryds, M. Eldrup, A.S. Pedersen, M. Ohnuma, T.J. Zhou, L. Gerward, J.Z. Jiang, and C. Lathe, in Supercooled Liquid, Bulk Glassy and Nanocrystalline States of Alloys, edited by A. Inoue, A.R. Yavari, W.L. Johnson, and R.H. Dauskardt (Mater. Res. Soc. Symp. Proc. 644, Warrendale, PA, 2001), p. L4.1.1.

  20. J.Z. Jiang, Y.X. Zhuang, H.K. Rasmussen, N. Nishiyama, A. Inoue, and C. Lathe, Europhys. Lett. 54, 182 (2001).

    Article  CAS  Google Scholar 

  21. J.Z. Jiang, K. Saksl, N. Nishiyama, and A. Inoue, J. Appl. Phys. 92, 3651 (2002).

    Article  CAS  Google Scholar 

  22. J.Z. Jiang, L. Gerward, and Y.S. Xu, Appl. Phys. Lett. 81, 4347 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J.Z., Yang, B., Saksl, K. et al. Crystallization of Cu60Ti20Zr20 metallic glass with and without pressure. Journal of Materials Research 18, 895–898 (2003). https://doi.org/10.1557/JMR.2003.0123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0123

Navigation