Log in

Synthesis and characterization of BaSn(OH)6 and BaSnO3 acicular particles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The synthesis of BaSn(OH)6 acicular crystals by precipitation at 100 °C from aqueous solutions and their transformation in the perovskitelike compound BaSnO3 was investigated. Single acicular crystals 100–200 μm in length were obtained from a 0.05M solution, whereas bundlelike aggregates of 20–40 μm were precipitated from 0.2–0.6 M solutions. The x-ray diffraction pattern of barium hexahydroxostannate was indexed according to monoclinic symmetry with cell parameters a = 11.029 ± 0.002 Å, b = 6.340 ± 0.001 Å, c = 10.563 ± 0.001 Å = 128.51 ± 0.01°, α = γ = 90°. The BaSn(OH)6 particles decomposed to BaSnO3 and water at approximately 270 °C and the original morphology was retained. The resulting product had specific surface area up to 30–40 m2/g and consisted of 10–20 nm crystallites. The larger unit cell edge in comparison to the reference value and the continuous weight loss up to 1200 °C indicate that water is not completely released during decomposition and a substantial amount of proton defects (up to 0.4 mol per mole of BaSnO3) is incorporated in the perovskite lattice as OH groups. Normal crystallographic properties of BaSnO3 are restored only after calcination at 1300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Jayaraman, G. Mangamma, T. Gnanasekaran, and G. Periaswami, Solid State Ionics 86–88, 1111 (1996).

    Article  Google Scholar 

  2. B. Ostrick, M. Fleischer, U. Lampe, and H. Meixner, Sens. Actuators B 44, 601 (1997).

    Article  CAS  Google Scholar 

  3. S. Tao, F. Gao, X. Liu, O.T. Sørensen, Sens. Actuators B 71, 223 (2000).

    Article  CAS  Google Scholar 

  4. M. Viviani, M.T. Buscaglia, V. Buscaglia, M. Leoni, and P. Nanni, J. Eur. Ceram. Soc. 21, 1981 (2001).

    Article  CAS  Google Scholar 

  5. G. Wagner and H. Binder, Z. Anorg. Allg. Chem. 297, 328 (1958).

    Article  CAS  Google Scholar 

  6. B. Ostrick, M. Fleischer, and H. Meixner, J. Am. Ceram. Soc. 80, 2153 (1997).

    Article  CAS  Google Scholar 

  7. T. Huang, T. Nakamura, M. Itoh, Y. Inaguma, and O. Ishiyama, J. Mater. Sci. 30, 1556 (1995).

    Article  CAS  Google Scholar 

  8. P. Murugaraj, K.D. Kreuer, T. He, T. Schober, and J. Maier, Solid State Ionics 98, 1 (1997).

    Article  CAS  Google Scholar 

  9. K.D. Kreuer, Solid State Ionics 125, 285 (1999).

    Article  CAS  Google Scholar 

  10. M.G. Smith, J.B. Goodenough, A. Manthiram, R.D. Taylor, W. Peng, C.W. Kimball, J. Solid State Chem. 98, 181 (1992).

    Article  CAS  Google Scholar 

  11. A-M. Azad and N.C. Hon, J. Alloys Comp. 270, 95 (1998).

    Article  CAS  Google Scholar 

  12. S. Upadhyay, O. Parkash, and D. Kumar, Mater. Lett. 49, 251 (2001).

    Article  CAS  Google Scholar 

  13. T.R.N. Kutty and R. Vivekanadan, Mater. Res. Bull. 22, 1457 (1987).

    Article  CAS  Google Scholar 

  14. R. Vivekanandan and T.R.N. Kutty, Ceram. Int. 14, 207 (1988).

    Article  Google Scholar 

  15. C.P. Udawatte and M. Yoshimura, Mater. Lett. 47, 7 (2001).

    Article  CAS  Google Scholar 

  16. W.W. Coffeen, J. Am. Ceram. Soc. 36, 207 (1953).

    Article  CAS  Google Scholar 

  17. M. Leoni, M. Viviani, P. Nanni, and V. Buscaglia, J. Mater. Sci. Lett. 15, 1302 (1996).

    Article  CAS  Google Scholar 

  18. M. Licheron, G. Jouan, and E. Husson, J. Eur Ceram. Soc. 17, 1453 (1997).

    Article  CAS  Google Scholar 

  19. A-M. Azad, M. Hashim, and S. Baptist, J. Mater. Sci. 35, 5475 (2000).

    Article  CAS  Google Scholar 

  20. C.P. Udawatte, M. Kakihana, and M. Yoshimura, Solid State Ionics 108, 23 (1998).

    Article  CAS  Google Scholar 

  21. G. Pfaff, J. Eur. Ceram. Soc. 12, 159 (1993).

    Article  CAS  Google Scholar 

  22. B.E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 251.

    Google Scholar 

  23. Powder Diffraction File, International Centre for Diffraction Data, Swarthmore, PA (1989).

  24. D.B. Wiles and R.A. Young, J. Appl. Crystallogr. 14, 149 (1981).

    Article  CAS  Google Scholar 

  25. A. Boultif and D. Lou ër, J. Appl. Crystallogr. 24, 987 (1991).

    Article  CAS  Google Scholar 

  26. J.M. Alía, Y. Díaz de Mera, H.G.M. Edwards, P. González Martín, and S. López Andrés, Spectrochimica Acta A 53, 2347 (1997).

    Article  Google Scholar 

  27. Inorganic Crystal Structure Database, Gmelin Institut, Fachinformationszentrum Karlsruhe, Germany (1998).

  28. M.D. Welch and W.A. Crichton, Mineralogical Magazine 66, 431 (2002).

    Article  CAS  Google Scholar 

  29. O. Knacke, O. Kubaschewski, and K, Hesselmann, Thermochemical Properties of Inorganic Substances, 2nd ed. (Springer, Berlin, Germany, 1991).

    Google Scholar 

  30. R. Waser, J. Am. Ceram. Soc. 71, 58 (1988).

    Article  CAS  Google Scholar 

  31. D. Hennings and S. Schreinemacher, J. Eur. Ceram. Soc. 9, 41 (1992).

    Article  CAS  Google Scholar 

  32. M. Viviani, M.T. Buscaglia, A. Testino, V. Buscaglia, P. Bowen, and P. Nanni, J. Eur. Ceram. Soc. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Buscaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buscaglia, M.T., Leoni, M., Viviani, M. et al. Synthesis and characterization of BaSn(OH)6 and BaSnO3 acicular particles. Journal of Materials Research 18, 560–566 (2003). https://doi.org/10.1557/JMR.2003.0072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0072

Navigation