Log in

Microporous SiO2/Vycor membranes for gas separation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, porous Vycor tubes with 40 Å initial pore diameter were modified using low pressure chemical vapor deposition (LPCVD) of SiO2. Diethylsilane (DES) in conjunction with O2 or N2O were used as precursors to synthesize the SiO2 films. Both “single side” (reactants flowing on the same side of porous membrane) and “counterflow” (reactants flowing on both sides of porous membrane) reactant geometries have been investigated. The flow of H2, He, N2, Ar, and toluene (C7H8) was monitored in situ after each deposition period. Membranes modified by the “single side” reactants geometry exhibited good selectivities between small and large molecules. However, cracking in these membranes after prolonged deposition limited the maximum achievable selectivity values. Higher selectivities and better mechanical stability were achieved with membranes produced using the “counterflow” reactants geometry. Pore narrowing rate was observed to increase with oxidant flow (O2 or N2O). For membranes prepared using both oxidants, selectivities on the order of 1000: 1 were readily attained for H2 and He over N2, Ar, and C7H8. As compared to O2, the use of N2O caused improvements in both the pore narrowing rate and N2: C7H8 selectivity. Membranes prepared using the “counterflow” geometry showed no signs of degradation or cracking after thermal cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chiu, Hydrocarbon Processing 69, 69 (1990).

    CAS  Google Scholar 

  2. R. Spillman, Chem. Eng. Prog. 85, 41 (1989).

    CAS  Google Scholar 

  3. R. Renko, Pollut. Eng. 26, 62 (1994).

    CAS  Google Scholar 

  4. G. Fagliano, M. Berry, F. Bove, and T. Burke, Public Works 122, 96 (1991).

    Google Scholar 

  5. R. Spillman and M. Sherwin, Chem. Tech. 20, 378 (1990).

    CAS  Google Scholar 

  6. J. D. Way and D. L. Roberts, Sep. Sci. Tech. 27, 29 (1992).

    Article  CAS  Google Scholar 

  7. M.V. Volf, Technical Glasses (Sir Isaac Pitman & Sons, Ltd., London, 1961), p. 178.

  8. H. P. Hsieh, AIChE Symp. Ser. 84, 1 (1988).

    CAS  Google Scholar 

  9. K. K. Chan and A.M. Brownstein, Ceram. Bull. 70, 703 (1991).

    CAS  Google Scholar 

  10. L. M. Sheppard, Ceram. Bull. 70, 1145 (1991).

    Google Scholar 

  11. S. Hwang and K. Kammermeyer, Techniques of Chemistry (John Wiley and Sons, Inc., New York, 1975), Vol. 7, p. 57.

  12. D. W. Shaefer, MRS Bull. 19, 14 (1994).

    Article  Google Scholar 

  13. R. E. Cunningham and R. J.J. Williams, Diffusion in Gases and Porous Solids (Plenum Press, New York, 1980), p. 12.

  14. R. A. Ulhorn and A.J. Burggraaf, in Inorganic Membranes, edited by R. Bhave (Chapman and Hall, New York, 1991), p. 167.

  15. A. B. Shelekhin, A.G. Dixon, and Y.H. Ma, AIChE J. 41, 58 (1995).

    Article  CAS  Google Scholar 

  16. A. Sherman, Chemical Vapor Deposition for Microelectronics: Principles, Technology and Applications (Noyes Publications, Park Ridge, NJ, 1987), p. 1.

  17. W. Kern, in Microelectronic Materials and Processes, edited by R. A. Levy (Kluwer Academic Publishers, Dordrecht, 1989), p. 203.

  18. H. P. Hsieh, Catal. Rev.-Sci. Eng. 33, 1 (1991).

    Article  CAS  Google Scholar 

  19. B. Gelernt, Semicond. Int. 13, 82 (1990).

    Google Scholar 

  20. A. K. Hochberg and D. L. O’Meara, J. Electrochem. Soc. 136, 1843 (1989).

    Article  CAS  Google Scholar 

  21. G. S. Chakravarthy, R. A. Levy, J. M. Grow, and W. M. Attia, in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2, edited by C. R. Helms and B.E. Deal (Plenum Press, New York, 1993), p. 165.

  22. G. R. Gavalas, C. E. Megiris, and S. W. Nam, Chem. Eng. Sci. 44, 1829 (1989).

    Article  CAS  Google Scholar 

  23. S. W. Nam and G.R. Gavalas, AIChE Symp. Ser. 268, 68 (1989).

    Google Scholar 

  24. M. Tsapatsis, S. Kim, S. W. Nam, and G. R. Gavalas, Ind. Eng. Chem. Res. 30, 2152 (1991).

    Article  CAS  Google Scholar 

  25. M. Tsapatsis and G. R. Gavalas, AIChE J. 38, 847 (1992).

    Article  CAS  Google Scholar 

  26. C. E. Megiris and J. H. E. Glezer, Ind. Eng. Chem. Res. 31, 1293 (1991).

    Article  Google Scholar 

  27. R. A. Levy, J. M. Grow, and G. S. Chakravarthy, Chem. Mater. 5, 1710 (1993).

    Article  CAS  Google Scholar 

  28. X. Feng, S. Sourirajan, F. Handan Tezel, T. Matsuura, and B. A. Farnand, Ind. Eng. Chem. Res. 32, 533 (1993).

    Article  CAS  Google Scholar 

  29. Y. S. Lin, J. Membrane Sci. 79, 55 (1993).

    Article  CAS  Google Scholar 

  30. P. I. Pohl and D. M. Smith, in Advances in Porous Materials, edited by S. Komarneni, D. M. Smith, and J. S. Beck (Mater. Res. Soc. Symp. Proc. 371, Pittsburgh, PA, 1995), p. 27.

  31. M. B. Rao and S. Sircar, Gas Separation & Purification 7, 279 (1993).

    Article  CAS  Google Scholar 

  32. M. B. Rao and S. Sircar, J. Membrane Sci. 85, 253 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, R.A., Ramos, E.S., Krasnoperov, L.N. et al. Microporous SiO2/Vycor membranes for gas separation. Journal of Materials Research 11, 3164–3173 (1996). https://doi.org/10.1557/JMR.1996.0402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0402

Navigation