Log in

Intercalation of molecular species into the interstitial sites of fullerene

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molecular species were found to diffuse readily into the octahedral interstitial sites of the fcc lattice of C60. The 13C NMR spectrum of C60 under magic angle spinning (MAS) conditions consisted of a primary resonance at 143.7 ppm and a minor peak shifted 0.7 ppm downfield. The downfield shift obeys Curie’s law and is attributed to the Fermi-contact interaction between paramagnetic oxygen molecules and all 60 carbon atoms of rapidly rotating adjacent C60 molecules. Exposure of C60 to 1 kbar oxygen for 1.75 h at room temperature resulted in a spectrum of seven evenly spaced resonances corresponding to the filling of 0 to 6 of the adjacent octahedral interstitial sites with oxygen molecules. The distribution of site occupancies about a C60 molecule provided evidence that the intercalation process is controlled by diffusion kinetics. Exposure to 0.14 kbar hydrogen gas at room temperature for 16 h filled a substantial fraction of the interstitial sites of C60 and C70 with hydrogen molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kioto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    Article  Google Scholar 

  2. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347, 354 (1990).

    Article  Google Scholar 

  3. R. C. Haddon et al, Nature 350, 320 (1990); A. F. Hebard et al, Nature 350, 600 (1991); Z. Zhang, C. Chen, S. P. Kelty, H. Dai, and C. M. Lieber, Nature 353, 333 (1991) and references therein.

  4. J. M. Hawkins et al, J. Org. Chem. 55, 6250 (1990); P. J. Fagan, J. C. Calabrese, and B. Malone, Science 252, 1160 (1991); A. L. Balch, V. J. Catalano, J. W. Lee, M. M. Olmstead, and S. R. Parkin, J. Am. Chem. Soc. 113, 8953 (1991); R. S. Koefod, M. F. Hudgens, and J. R. Shaply, J. Am. Chem. Soc. 113, 8957 (1991); F. Wudl, Large Carbon Clusters, ACS Symposium, Atlanta, GA, July 1991; H. Selig et al, J. Am. Chem. Soc. 113, 5907 (1991); J. W. Bausch et al, J. Am. Chem. Soc. 113, 3205 (1991); P. J. Krusic et al, J. Am. Chem. Soc. 113, 6274 (1991); P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, Science 254, 1183 (1991); P-M. Allemand et al, J. Am. Chem. Soc. 113, 1050 (1991).

    Article  CAS  Google Scholar 

  5. R. M. Fleming et al, Phys. Rev. B 44, 888 (1991); untwinned crystals have been shown to be orthorhombic a = 10. 34, b = 31. 53, c = 10. 18 Å, Cmcm with buckyballs centered at 0. 0, 0. 1396, 1/4 on 4-fold mm sites and toluene disordered on similar sites on the ab and be planes at z = 1/4 with carbon positions of y = 0. 36 to 0. 51 (B. Morosin, X. D. **ang, and A. Zettl, unpublished).

    Article  CAS  Google Scholar 

  6. B. Morosin et al, Physica C 184, 21 (1991).

    Article  CAS  Google Scholar 

  7. (A) The sample was purified by chromatography [P-M. Allemand et al, J. Am. Chem. Soc. 113, 1050 (1991)] from toluene soluble soot purchased from Texas Fullerene Corp. , Houston, TX. The starting material was annealed for 2 h at 225 °C and this step sharpened the x-ray powder diffraction lines appreciably as well as annealed and removed the stacking faults and defects contributing to the “foot” character of the (111) line. (B) The sample was purchased as 99. 5% pure from Texas Fullerene Corp. This sample as-received showed broad x-ray lines which became sharp upon annealing at 225 °C with no evidence of a “foot” on the (11) line.

  8. K. M. Creegan et al, poster presented at the MRS Fall Meeting, Boston, MA, 2-6 December 1991.

  9. J. P. Jesson, in The Paramagnetic Shift, edited by G. N. La Mar, W. DeW. Horrocks, Jr. , and R. H. Holm (Academic Press, New York, 1973), pp. 1–52.

  10. R. Tycko et al, J. Phys. Chem. 95, 518 (1991); C. S. Yannoni, R. D. Johnson, G. Meijer, D. S. Bethune, and J. R. Salem, J. Phys. Chem. 95, 9 (1991).

    Article  CAS  Google Scholar 

  11. R. Tycko et al, Phys. Rev. Lett. 67, 1886 (1991).

    Article  CAS  Google Scholar 

  12. F. Devreux, J. P. Boilot, F. Chaput, and B. Sapoval, Phys. Rev. Lett. 65, 614 (1990).

    Article  CAS  Google Scholar 

  13. U. Haeberlin and J. S. Waugh, Phys. Rev. 185, 420 (1969).

    Article  Google Scholar 

  14. P. Heiney et al, Phys. Rev. Lett. 66, 2911 (1991); S. Liu, Y. Lu, M. M. Kappes, and J. A. Ibers, Science 254, 408 (1991); W. I. F. David et al, Nature 353, 147 (1991).

    Article  CAS  Google Scholar 

  15. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960), pp. 259–264.

  16. To be published.

  17. The molecular mechanics calculations were performed using the Dreiding II force field model [S. L. Mayo, B. D. Olafson, and W. A. Goddard, J. Phys. Chem. 94, 8897 (1990)] implemented on Biograf software, Molecular Simulations, Inc. , Sunnyvale, CA.

Download references

Author information

Authors and Affiliations

Authors

Additional information

a) Author to whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assink, R.A., Schirber, J.E., Loy, D.A. et al. Intercalation of molecular species into the interstitial sites of fullerene. Journal of Materials Research 7, 2136–2143 (1992). https://doi.org/10.1557/JMR.1992.2136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.2136

Navigation