Log in

The sintering behavior of ultrafine alumina particles

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. N. Nabarro, Rept. Conf. Strength of Solids (1948), p. 75.

  2. C. Herring, J. Appl. Phys. 21, 437 (1950).

    Article  Google Scholar 

  3. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).

    Article  CAS  Google Scholar 

  4. E. O. Hall, Proc. Phys. Soc. London B 64, 747 (1951).

    Article  Google Scholar 

  5. N. J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  6. R. W. Siegel, S. Ramasamy, H. Hahn, L. Zongquan, L. Ting, and R. Gronsky, J. Mater. Res. 3, 1367 (1988).

    Article  CAS  Google Scholar 

  7. G. J. Thomas, R. W. Siegel, and J. A. Eastman, Scripta Metall. 24, 201 (1990).

    Article  CAS  Google Scholar 

  8. W. Wunderlich, Y. Ishida, and R. Maurer, Scripta Metall. 24, 403 (1990).

    Article  CAS  Google Scholar 

  9. S. Iijima, Jpn. J. Appl. Phys. 23, L347 (1984).

    Article  Google Scholar 

  10. S. Iijima, J. Electron Microsc. 34, 249 (1985).

    CAS  Google Scholar 

  11. C. E. Warble, J. Mater. Sci. 20, 2512 (1985).

    Article  CAS  Google Scholar 

  12. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. 23, 2013 (1989).

    Article  CAS  Google Scholar 

  13. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. 24, 145 (1990).

    Article  CAS  Google Scholar 

  14. G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  CAS  Google Scholar 

  15. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. 23, 1679 (1989).

    Article  CAS  Google Scholar 

  16. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988).

    Book  Google Scholar 

  17. A. Howie and L. D. Marks, Philos. Mag. A 49, 95 (1984).

    Article  CAS  Google Scholar 

  18. J. E. Bonevich, in Proc. 47th Ann. Meet. Electron. Microsc. Soc. Am. (1988), p. 258.

  19. K. Kimoto and I. Nishida, Jpn. J. Appl. Phys. 6, 1047 (1967).

    Article  CAS  Google Scholar 

  20. C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).

    Article  CAS  Google Scholar 

  21. T. Hayashi, T. Ohno, S. Yatsuya, and R. Uyeda, Jpn. J. Appl. Phys. 16, 705 (1977).

    Article  CAS  Google Scholar 

  22. A. R. Thölén, Acta Metall. 27, 1765 (1979).

    Article  Google Scholar 

  23. K. Heinemann, M. J. Yacaman, C. Y. Yang, and H. Poppa, J. Cryst. Growth 47, 177 (1979).

    Article  CAS  Google Scholar 

  24. J. E. Bonevich, M-H. Teng, D. L. Johnson, and L. D. Marks, Review Sci. Instrum. 62, 3061 (1991).

    Article  CAS  Google Scholar 

  25. J. E. Bonevich and L. D. Marks, Microscopy (1992, in press); also in Hitachi Instrument News 17, 4 (1989).

    Google Scholar 

  26. There are four cubic ‘γ’-phases in Crystal Data: Determinative Tables, 3rd ed., edited by J. D. H. Donnay and H. M. Ondik (JCPDS, 1973), Vol. 2, pp. 35, 189, 195.

  27. H. P. Rooksby, X-ray Identification and Crystal Structures of Clay Minerals (London, 1951).

  28. J. V. Smith, Geometrical and Structural Crystallography (John Wiley, New York, 1982).

    Google Scholar 

  29. B. C. Lippens and J. H. deBoer, Acta Cryst. 17, 1312 (1964).

    Article  CAS  Google Scholar 

  30. H. P. Rooksby and C. J. M. Rooymans, Clay Minerals Bull. 4, 234 (1961).

    Article  CAS  Google Scholar 

  31. A. Dauger and D. Fargeot, Radiat. Eff. 74, 279 (1983).

    Article  CAS  Google Scholar 

  32. D. Fargeot, D. Mercurio, and A. Dauger, Mater. Chem. Phys. 24, 299 (1990).

    Article  CAS  Google Scholar 

  33. V. Jayaram and C. G. Levi, Acta Metall. 37, 569 (1989).

    Article  CAS  Google Scholar 

  34. R. Dieckmann, Ber. Bunsenges. Phys. Chem. 86, 112 (1982).

    Article  CAS  Google Scholar 

  35. F. Ernst, P. Pirouz, and A. H. Heuer, Philos. Mag. A 63, 259 (1991).

    Article  CAS  Google Scholar 

  36. X-ray analysis of UFP specimens conducted by M-H. Teng at Northwestern University.

  37. M-H. Teng, Ph.D. Dissertation, Northwestern University (1991), in preparation.

  38. J. E. Bonevich and L. D. Marks, Ultramicroscopy 35, 161 (1991).

    Article  CAS  Google Scholar 

  39. L. A. Bursill and P. J. Lin, Philos. Mag. A 60, 307 (1989).

    Article  CAS  Google Scholar 

  40. I. Hannson and A. R. Thölén, Philos. Mag. A 37, 535 (1978).

    Article  Google Scholar 

  41. A. R. Thölén, in Microscopic Aspects of Adhesion and Lubrication, edited by J. M. Georges (Elsevier, Amsterdam, 1982), p. 263.

  42. L. D. Marks, Surf. Sci. 150, 302 (1985).

    Article  CAS  Google Scholar 

  43. D. L. Johnson, J. Appl. Phys. 40, 192 (1969).

    Article  CAS  Google Scholar 

  44. F. A. Nichols, J. Appl. Phys. 37, 2805 (1966).

    Article  CAS  Google Scholar 

  45. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand, New York, 1981), pp. 199–201.

    Google Scholar 

  46. A. W. Searcy, J. Am. Ceram. Soc. 68, C267 (1985).

    Article  Google Scholar 

  47. L. D. Marks, J. Cryst. Growth 61, 556 (1983).

    Article  CAS  Google Scholar 

  48. P. M. Ajayan and L. D. Marks, Phase Transitions 24–26, 229 (1990).

    Article  Google Scholar 

  49. P. H. Shingu, Ph.D. Dissertation, Northwestern University (1967), p. 64.

  50. M. Komatsu and H. Fujita, Hitachi Instrum. News 21, 18 (1991).

    Google Scholar 

  51. C.J-P. Steiner, D. P. H. Hasselman, and R. M. Spriggs, J. Am. Ceram. Soc. 54, 412 (1971).

    Article  CAS  Google Scholar 

  52. T. Hirayama, J. Am. Ceram. Soc. 70, C122 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonevich, J.E., Marks, L.D. The sintering behavior of ultrafine alumina particles. Journal of Materials Research 7, 1489–1500 (1992). https://doi.org/10.1557/JMR.1992.1489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.1489

Navigation