Log in

Interfacial reactions in the Nb/GaAs system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solid-state reactions between niobium and gallium arsenide in both thin film and bulk forms were studied in the temperature range 400 to 1000 °C using transmission electron microscopy (TEM), metallography, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Initially Nb4As3 and Nb5Ga3 formed at the interface and grew very slowly. Following an incubation period, NbAs and NbGa, nucleated and grew at rates several orders of magnitude faster than the initial phases. The resulting metastable diffusion path, Nb/NbGa3/NbAs/GaAs, was observed even after relatively long-term annealing and is believed to be kinetically stabilized. Formation of the other Nb–Ga binary compounds as predicted by the phase diagram was inhibited by nucleation and kinetic barriers. The observed reaction sequence is discussed considering the thermodynamics, kinetics, and possible growth mechanisms involved in the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Yu, Ph.D. Thesis, University of California–Berkeley, 1987.

  2. J. Ding, B. Lee, R. Gronsky, J. Washburn, D. Chin, and T. Van Duzer, Appl. Phys. Lett. 52, 135 (1988).

    Article  CAS  Google Scholar 

  3. X. W. Wu, L. C. Zhang, P. Bradley, D. K. Chin, and T. Van Duzer, Appl. Phys. Lett. 50, 288 (1987).

    Google Scholar 

  4. K. Suh, H. K. Park, and K. L. Moazed, J. Vac. Sci. Technol. B 1, 365 (1983).

    Article  Google Scholar 

  5. P. Ling, J-K. Chang, M-S. Lin, and J-C. Lou, Mater. Res. Soc. Proc. 48, 137 (1985).

    Article  CAS  Google Scholar 

  6. S. D. Mukherjee, D. V. Morgan, and M. J. Howes, J. Vac. Sci. Technol. 16, 138 (1979).

    Article  CAS  Google Scholar 

  7. S. D. Mukherjee, C. J. Palmstron, and J. G. Smith, J. Vac. Sci. Technol. 17, 904 (1980).

    Article  CAS  Google Scholar 

  8. K. M. Yu, S. K. Cheung, T. Sands, J. M. Jaklevic, N. W. Cheung, and E. E. Haller, J. Appl. Phys. 60, 3235 (1986).

    Article  CAS  Google Scholar 

  9. J. C. Lin, K. J. Schulz, K-C. Hsieh, and Y. A. Chang, in High Temperature Materials Chemistry IV.-3. Electronic Materials, edited by Z. A. Munir, D. C. Cubicciotti, and H. Tagawa (The Electrochem. Soc., Inc., Princeton, NJ, 1988). Also submitted to the J. Electrochem. Soc. for publication.

    Google Scholar 

  10. J. S. Kirkaldy and L. C. Brown, Can. Met. Quart. 2, 89 (1963).

    Article  CAS  Google Scholar 

  11. J-C. Lin, K-C. Hsieh, K. J. Schulz, and Y. A. Chang, J. Mater. Res. 3, 148 (1988).

    Article  CAS  Google Scholar 

  12. K. J. Schulz, X-Y. Zheng, and Y. A. Chang, Mater. Res. Soc. Symp. Proc. 108 (1987).

  13. H. Kakibayashi and F. Nagata, Jpn. J. Appl. Phys. 24, L905 (1985).

    Article  CAS  Google Scholar 

  14. M. R. Yu, F. R. Zhu, X. Wang, B. Q. Wang, K. Zao, P. S. Pu, and C. L. Lei, Chin. J. Semicond. 6, 55 (1985).

    CAS  Google Scholar 

  15. F. M. d’Heurle, J. Mater. Res. 3, 167 (1988).

    Article  Google Scholar 

  16. F. M. d’Heurle and P. Gas, J. Mater. Res. 1, 205 (1986).

    Article  Google Scholar 

  17. T. Sands, V. G. Keramidas, J. Washburn, and R. Gronsky, Appl. Phys. Lett. 48, 402 (1986).

    Article  CAS  Google Scholar 

  18. J. C. Lin, X-Y. Zheng, K. C. Hsieh, and Y. A. Chang, Mater. Res. Soc. Symp. Proc. 102 (1987).

  19. K. J. Schulz, Ph.D. Thesis, University of Wisconsin-Madison, 1988.

  20. F-Y. Shiau, Y. A. Chang, and L. J. Chen, J. Electronic Mater. 17, 433 (1988); also F-Y. Shiau, Y. Zuo, X-Y. Zheng, J-C. Lin, and Y. A. Chang, Mater. Res. Soc. Symp. Proc. 119 (1988).

    Article  CAS  Google Scholar 

  21. M. Ronay, Appl. Phys. Lett. 42, 577 (1983).

    Article  CAS  Google Scholar 

  22. P. Feschotte and E. L. Spitz, J. Less-Common Metals 37, 233 (1974).

    Article  CAS  Google Scholar 

  23. S. Rundqvist, B. Carlsson, and C. Pontchour, Acta Chem. Scand. 23, 2188 (1969).

    Article  CAS  Google Scholar 

  24. U. Gösele and K. N. Tu, J. Appl. Phys. 53, 3252 (1982).

    Article  Google Scholar 

  25. F. J. J. van Loo and G. D. Rieck, Acta Metall. 21, 61 (1973).

    Article  Google Scholar 

  26. S. Steeb and R. Keppeler, Z. Naturforsch. 24a, 1601 (1969).

    Article  Google Scholar 

  27. C. Wagner, J. Electrochem. Soc. 103, 571 (1956).

    Article  CAS  Google Scholar 

  28. R. A. Rapp, A. Ezis, and G. J. Yurek, Metall. Trans. 4, 1283 (1973).

    Article  CAS  Google Scholar 

  29. J. B. Clark and F. N. Rhines, Trans. ASM 51, 199 (1959).

    Google Scholar 

  30. T. Sands, V. G. Keramidas, K. M. Yu, J. Washburn, and K. Krishnan, J. Appl. Phys. 62, 2070 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, K.J., Zheng, XY. & Chang, Y.A. Interfacial reactions in the Nb/GaAs system. Journal of Materials Research 4, 1462–1472 (1989). https://doi.org/10.1557/JMR.1989.1462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.1462

Navigation