Log in

Efficient synthesis of bis-isoxazole ethers via 1,3-dipolar cycloaddition catalysed by Zn/Zn2+ and their antifungal activities

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An efficient method was developed for synthesising isoxazoles. A series of novel bis-isoxazole ether compounds VI, VII and VIII were synthesised starting from different substituted aldehydes (I) via a 1,3-dispolar cycloaddition using Zn/Zn2+ as a catalyst; these were characterised by FT-IR, HRMS, 1H NMR and 13C NMR spectroscopy. In addition, the antimicrobial properties of the synthesised products were investigated. The synthesised compounds exhibited significant antifungal activities in comparison with the standard drugs, fluconazole and itraconazole. It was found that Candida albicans was sensitive to 2-substituted phenyl bis-isoxazole ethers bearing pyridyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbachyn, M. R., Cleek, G. J., Dolak, L. A., Garmon, S. A., Morris, J., Seest, E. P., Thomas, R. C., Toops, D. S., Watt, W., Wishka, D. G., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D., Yagi, B. H., Adams, W. J., Friis, J. M., Slatter, J. G., Sams, J. P., Oien, N. L., Zaya, M. J., Wienkers, L. C., & Wynalda, M. A. (2003). Identification of phenylisoxazolines as novel and viable antibacterial agents active against gram-positive pathogens. Journal of Medicinal Chemistry, 46 284–302. DOI: 10.1021/jm020248u.

    Article  CAS  Google Scholar 

  • Bhosale, S., Kurhade, S., Prasad, U. V., Palle, V. P., & Bhuniya, D. (2009). Efficient synthesis of isoxazoles and isoxazolines from aldoximes using Magtrieve™ (CrO2). Tetrahedron Letters, 50 3948–3951. DOI: 10.1016/j.tetlet.2009.04.073.

    Article  CAS  Google Scholar 

  • Biesinger, M. C., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2010). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 257 887–898. DOI: 10.1016/j.apsusc.2010.07.086.

    Article  CAS  Google Scholar 

  • Chen, M., Wang, X., Yu, Y. H., Pei, Z. L., Bai, X. D., Sun, C., Huang, R. F., & Wen, L. S. (2000). X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science, 158 134–140. DOI: 10.1016/s0169-4332(99)00601-7.

    Article  CAS  Google Scholar 

  • Cuadrado, P., González-Nogal, A. M., & Valero, R. (2002). Regiospecific synthesis of 5-silyl azoles. Tetrahedron, 58 4975–4980. DOI: 10.1016/s0040-4020(02)00386-1.

    Article  CAS  Google Scholar 

  • Daliboyena, S., & Nefzi, A. (2012). Solid phase synthesis of isoxazole and isoxazoline-carboxamides via [2+3]-dipolar cycloaddition using resin-bound alkynes or alkenes. Tetrahedron Letters, 53 2096–2099. DOI: 10.1016/j.tetlet.2012.02.041.

    Article  Google Scholar 

  • Gagneux, A. R. (1965). Synthesis of ibotenic acid. Tetrahedron Letters, 25 2081–2084. DOI: 10.1016/s0040-4039(00)90158-8.

    Article  Google Scholar 

  • Gothelf, K. V., & Jørgensen, K. A. (1998). Asymmetric 1,3-dipolar cycloaddition reactions. Chemical Reviews, 98 863–910. DOI: 10.1021/cr970324e.

    Article  CAS  Google Scholar 

  • Grecian, S., & Fokin, V. V. (2008). Ruthenium-catalyzed cycloaddition of nitrile oxides and alkynes: Practical synthesis of isoxazoles. Angewandte Chemie International Edition, 47 8285–8287. DOI: 10.1002/anie.200801920.

    Article  CAS  Google Scholar 

  • Grischenko, L. A., Parshina, L. N., Kanitskaya, L. V., Larina, L. I., Novikova, L. N., & Trofimov, B. A. (2013). Propargylation of arabinogalactan with propargyl halides—a facile route to new functionalized biopolymers. Carbohydrate Research, 376 7–14. DOI: 10.1016/j.carres.2013.04.031.

    Article  CAS  Google Scholar 

  • Günanger, P., Vita-Finzi, P., Taylor, E. C., & Weissberger, A. (1991). The chemistry of heterocyclic compounds: Isoxazoles. New York, NY, USA: Wiley.

    Google Scholar 

  • Hansen, T. V., Wu, P., & Fokin, V. V. (2005). One-pot copper(I)-catalyzed synthesis of 3,5-disubstituted isoxazoles. Journal of Organic Chemistry, 70 7761–7764. DOI: 10.1021/jo050163b.

    Article  CAS  Google Scholar 

  • Heravi, M. M., Derikvand, F., Haeri, A., Oskooie, H. A., & Bamoharram, F. F. (2008). Heteropolyacids as green and reusable catalysts for the synthesis of isoxazole derivatives. Synthetic Communications, 38 135–140. DOI: 10.1080/00397910701651326.

    Article  CAS  Google Scholar 

  • Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B., & Fokin, V. V. (2005). Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. Journal of the American Chemical Society, 127 210–216. DOI: 10.1021/ja0471525.

    Article  CAS  Google Scholar 

  • Kanemasa, S., & Tsuge, O. (1990). Recent advances in synthetic applications of nitrile oxide cycloaddition (1981–1989). Heterocycles, 30 719–736. DOI: 10.3987/rev-89-sr3.

    Article  CAS  Google Scholar 

  • Kanemasa, S., Kobayashi, S., Nishiuchi, M., Yamamoto, H., & Wada, E. (1991). Generation of nitrile oxides through O-methylation of hydroxyl chlorides. Chelation-controlled syn-selective cycloaddition of nitrile oxides to α-substituted allyl alcohols. Tetrahedron Letter, 32 6367–6370. DOI: 10.1016/0040-4039(91)80171-2.

    Article  CAS  Google Scholar 

  • Katritzky, A. R., Button, M. A. C., & Denisenko, S. N. (2000). Efficient synthesis of 3,5-functionalized isoxazoles and isoxazolines via 1,3-dipolar cycloaddition reactions of 1-propargyland 1-allylbenzotriazoles. Journal of Heterocyclic Chemistry, 37 1505–1510. DOI: 10.1002/jhet.5570370616.

    Article  CAS  Google Scholar 

  • Kurangi, R. F., Kawthankar, R., Sawal, S., Desai, V. G., & Tilve, S. G. (2007). Convenient synthesis of 3,5-disubstituted isoxazoles. Synthetic Communications, 37 585–587. DOI: 10.1080/00397910601055107.

    Article  CAS  Google Scholar 

  • Lane, T. J., Nakagawa, I., Walter, J. L., & Kandathil, A. J. (1962). Infrared investigation of certain imidazole derivatives and their metal chelates. Inorganic Chemistry, 1 267–276. DOI: 10.1021/ic50002a014.

    Article  CAS  Google Scholar 

  • Li, G. Y., Qian, X. H., Cui, J. N., Huang, Q. C., Zhang, R., & Guan, H. (2006). Synthesis and herbicidal activity of novel 3-aminocarbonyl-2-oxazolidinedione derivatives containing a substituted pyridine ring. Journal of Agricultural and Food Chemistry, 54 125–129. DOI: 10.1021/jf051928j.

    Article  CAS  Google Scholar 

  • Lin, S. T., Kuo, S. H., & Yang, F. M. (1997). Reaction of halogenated cyclopropanes and nitrosyl cation: Preparation of isoxazoles. The Journal of Organic Chemistry, 62 5229–5231. DOI: 10.1021/jo962297i.

    Article  CAS  Google Scholar 

  • Liu, M. C., Lin, T. S., Cory, J. G., Cory, A. H., & Sartorelli, A. C. (1996). Synthesis and biological activity of 3- and 5-amino derivatives of pyridine-2-carboxaldehyde thiosemicarbazone. Journal of Medicinal Chemistry, 39 2586–2593. DOI: 10.1021/jm9600454.

    Article  CAS  Google Scholar 

  • Lu, Y. C., Lin, Y. H., Wang, D. J., Wang, L. L., **e, T. F., & Jiang, T. F. (2011). A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Research, 4 1144–1152. DOI: 10.1007/s12274-011-0163-4.

    Article  CAS  Google Scholar 

  • Lu, Y. C., Lin, Y. H., **e, T. F., Shi, S. L., Fan, H. M., & Wang, D. J. (2012). Enhancement of visible-light-driven photoresponse of Mn/ZnO system: photogenerated charge transfer properties and photocatalytic activity. Nanoscale, 4 6393–6400. DOI: 10.1039/c2nr31671d.

    Article  CAS  Google Scholar 

  • Lunn, M. L., Hogner, A., Stensbøl, T. B., Gouaux, E., Egebjerg, J., & Kastrup, J. S. (2003). Three-dimensional structure of the ligand-binding core of GluR2 in complex with the agonist (S)-ATPA: Implications for receptor subunit selectivity. Journal of Medicinal Chemistry, 46 872–875. DOI: 10.1021/jm021020+.

    Article  CAS  Google Scholar 

  • Ma, X. F., Wang, J. X., Li, S. X., Wang, K. H., & Huang, D. F. (2009). One-pot, solvent-free regioselective addition reactions of propargyl bromide to carbonyl compounds mediated by Zn—Cu couple. Tetrahedron, 65 8683–8689. DOI: 10.1016/j.tet.2009.08.051.

    Article  CAS  Google Scholar 

  • Minakata, S., Okumura, S., Nagamachi, T., & Takeda, Y. (2011). Generation of nitrile oxides from oximes using t-BuOI and their cycloaddition. Organic Letters, 13 2966–2969. DOI: 10.1021/ol2010616.

    Article  CAS  Google Scholar 

  • Murugesan, N., Gu, Z. X., Stein, P. D., Spergel, S., Mathur, A., Leith, L., Liu, E. C. K., Zhang, R. G., Bird, E., Waldron, T., Marino, A., Morrison, R. A., Webb, M. L., Moreland, S., & Barrish, J. C. (2000). Biphenylsulfonamide endothelin receptor antagonists. 2. Discovery of 4′-oxazolyl biphenylsulfonamides as a new class of potent, highly selective ETA antagonists. Journal of Medicinal Chemistry, 43 3111–3117. DOI: 10.1021/jm000105c.

    Article  CAS  Google Scholar 

  • Murugesan, N., Gu, Z. X., Fadnis, L., Tellew, J. E., Baska, R. A. F., Yang, Y. F., Beyer, S. M., Monshizadegan, H., Dickinson, K. E., Valentine, M. T., Humphreys, W. G., Lan, S. J., Ewing, W. R., Carlson, K. E., Kowala, M. C., Zahler, R., & Macor, J. E. (2005). Dual angiotensin II and endothelin A receptor antagonists: Synthesis of 2′-substituted N-3-isoxazolyl biphenylsulfonamides with improved potency and pharmacokinetics. Journal of Medicinal Chemistry, 48 171–179. DOI: 10.1021/jm049548x.

    Article  CAS  Google Scholar 

  • Pirrung, M. C., Tumey, L. N., Raetz, C. R. H., Jackman, J. E., Snehalatha, K., McClerren, A. L., Fierke, C. A., Gantt, S. L., & Rusche, K. M. (2002). Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): Isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. Journal of Medicinal Chemistry, 45 4359–4370. DOI: 10.1021/jm020183v.

    Article  CAS  Google Scholar 

  • Renard, J. F., Arslan, D., Garbacki, N., Pirotte, B., & de Leval, X. (2009). Pyridine analogues of nimesulide: Design, synthesis, and in vitro and in vivo pharmacological evaluation as promising cyclooxygenase 1 and 2 inhibitors. Journal of Medicinal Chemistry, 52 5864–5871. DOI: 10.1021/jm900702b.

    Article  CAS  Google Scholar 

  • Shen, C. S., Zhang, Y. M., Gan, Y. M., & Gu, Q. (2011). One-pot synthesis of (3-phenyl isoxazol-5-yl)methanol derivatives under ultrasound. Letters in Organic Chemistry, 8 278–281. DOI: 10.2174/157017811795371467.

    Article  CAS  Google Scholar 

  • Stanley, L. M., & Sibi, M. P. (2008). Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chemical Reviews, 108 2887–2902. DOI: 10.1021/cr078371m.

    Article  CAS  Google Scholar 

  • Stevens, R. V. (1976). Studies on the synthesis of corrins and related ligands. Tetrahedron, 32 1599–1612. DOI: 10.1016/0040-4020(76)85146-0.

    Article  CAS  Google Scholar 

  • Su, Q., Li, P., He, M. N., Wu, Q. L., Ye, L., & Mu, Y. (2014). Facile synthesis of acridine derivatives by ZnCl2-promoted intramolecular cyclization of o-aryl aminophenol schiff bases. Organic Letters, 16 18–21. DOI: 10.1021/ol402732n.

    Article  CAS  Google Scholar 

  • Tanaka, K., Inoue, S., Murai, N., Shirotori, S., Nakamoto, K., Abe, S., Horii, T., Miyazaki, M., Hata, K., Watanabe, N., Asada, M., & Matsukura, M. (2010). An effective synthesis of a (pyridin-3-yl)isoxazole via 1,3-dipolar cycloaddition using ZnCl2: Synthesis of a (2-aminopyridin-3-yl)isoxazole derivative and its antifungal activity. Chemistry Letters, 39 1033–1035. DOI: 10.1246/cl.2010.1033.

    Article  CAS  Google Scholar 

  • van Mersbergen, D., Wijnen, J. W., & Engberts, J. B. F. N. (1998). 1,3-Dipolar cycloadditions of benzonitrile oxide with various dipolarophiles in aqueous solutions. A kinetic study. Journal of Organic Chemistry, 63 8801–8805. DOI: 10.1021/jo980900m.

    Article  Google Scholar 

  • Wagner, G., Danks, T. N., & Vullo, V. (2007). Quantum-chemical study of the Lewis acid influence on the cycloaddition of benzonitrile oxide to acetonitrile, propyne and propene. Tetrahedron, 63 5251–5260. DOI: 10.1016/j.tet.2007.03.169.

    Article  CAS  Google Scholar 

  • Waldo, J. P., & Larock, R. C. (2005). Synthesis of isoxazoles via electrophilic cyclization. Organic Letters, 7 5203–5205. DOI: 10.1021/ol052027z.

    Article  CAS  Google Scholar 

  • Yoshimura, A., Middleton, K. R., Todora, A. D., Kastern, B. J., Koski, S. R., Maskaev, A. V., & Zhdankin, V. V. (2013). Hypervalent iodine catalyzed generation of nitrile oxides from oximes and their cycloaddition with alkenes or alkynes. Organic Letters, 15 4010–4013. DOI: 10.1021/ol401815n.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Gu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DW., Lin, F., Li, BC. et al. Efficient synthesis of bis-isoxazole ethers via 1,3-dipolar cycloaddition catalysed by Zn/Zn2+ and their antifungal activities. Chem. Pap. 69, 1500–1511 (2015). https://doi.org/10.1515/chempap-2015-0161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0161

Keywords

Navigation