Log in

Bioinformatic analysis of Arabidopsis reverse transcriptases with a zinc-finger domain

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Plants, as most eukaryotic organisms, harbor several genes encoding a reverse transcriptase domain. The majority of them are part of transposable elements (TEs) and/or retroviral genomes that have been inserted into their genomes. However, there are some examples of RT domain-containing genes that have been endogenized during plant evolution; these genes appear to display functions other than “selfish” maintenance and replication of TEs, and subjected to host gene regulation. In the present work we have analyzed a subset of genes in Arabidopsis with an RT domain (RVT) containing a zinc finger motif (Znf), termed RVT-Znf domain, with structural characteristics of endogenous genes i.e., contain potential upstream regions as well as 5’UTR, and 3’UTR, and are not flanked by retroelement features. Phylogenetic analysis of these genes, based on the RVT-Znf domain, indicates that there are three clades, the members of which having additional domains. When compared to additional sequences, RVT-Znf formed a cluster that is more closely related to non-LTR retrotransposons and group II introns. Extant data from microarray databases indicate that several Arabidopsis genes are expressed. These data indicate that these RTs may have been endogenized. Possible roles for these genes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen J. 2005. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. & Dev. 15: 621–627. doi: 10.1016/j.gde.2005.09.010.

    Article  CAS  Google Scholar 

  • Bundock P. & Hooykaas P. 2005. An Arabidopsis hAT-like transposase is essential for plant development. Nature 436: 282–284. doi: 10.1038/nature03667.

    Article  CAS  Google Scholar 

  • Creasey K.M., Zhai J., Borges F., Van Ex F., Regulski M., Meyers B.C. & Martienssen R.A. 2014. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508: 411–415. doi: 10.1038/nature13069.

    Article  CAS  Google Scholar 

  • Crooks G.E., Hon G., Chandonia J.M. & Brenner S.E. 2004. WebLogo: A sequence logo generator. Genome Res. 14: 1188–1190.

    Article  CAS  Google Scholar 

  • Duan K., Ding X., Zhang Q., Zhu H., Pan A. & Huang J. 2008. AtCopeg1, the unique gene originated from AtCopia95 retrotransposon family, is sensitive to external hormones and abiotic stresses. Plant Cell Rep. 27:1065–1073. doi: 10.1007/s00299-008-0520-2.

    Article  CAS  Google Scholar 

  • Felsenstein J. 1985. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39: 783–791. doi: 10.2307/2408678.

    Article  Google Scholar 

  • Feschotte C., Jiang N. & Wessler S. 2002. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3: 329–341. doi: 10.1038/nrg793.

    Article  CAS  Google Scholar 

  • Feschotte C. 2008. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9: 397–405. doi: 10.1038/nrg2337.

    Article  CAS  Google Scholar 

  • Gouy M., Guindon S., Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27: 221–224. doi: 10.1093/molbev/msp259.

    Article  CAS  Google Scholar 

  • Grandbastien M.A. 2015. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim. Biophys. Acta 1849: 403–416. doi: 10.1016/j.bbagrm.2014.07.017.

    Article  CAS  Google Scholar 

  • Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L. et al. 2008. Genevestigator V3, a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008: 420747. doi: 10.1155/2008/420747.

    Article  Google Scholar 

  • Huang C.R., Burns K.H., Boeke J.D. 2012. Active transposition in genomes. Annu. Rev. Genet. 46: 651–675. doi: 10.1146/annurev-genet-110711-155616.

    Article  CAS  Google Scholar 

  • Hua-Van A., Le Rouzic A., Maisonhaute C., Capy P. 2005. Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet. Genome Res. 110: 426–440. doi: 10.1159/000084975.

    Article  CAS  Google Scholar 

  • Hudson M., Lisch D. & Quail P. 2003. The FHY3 and FAR1 genes encode transposase related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. 34: 453–471. doi: 10.1046/j.1365-313X.2003.01741.x.

    Article  CAS  Google Scholar 

  • Keren I., Bezawork- Geleta A., Kolton M. Maayan I., Belausov E., Levy M., Mett A., Gidoni D., Shaya F., & Ostersetzer-Biran O. 2009. AtnMat2, a nuclear-encoded maturase required for splicing of group-II introns in Arabidopsis mitochondria. RNA 15: 2299–2311. doi: 10.1261/rna.1776409.

    Article  CAS  Google Scholar 

  • Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 2321: 2947–2948.

    Article  Google Scholar 

  • Lisch D. 2013. How important are transposons for plant evolution? Nat. Rev. Genet. 141: 49–61. doi: 10.1038/nrg3374.

    Article  Google Scholar 

  • Lucas W.J., Groover A., Lichtenberger R., Furuta K., Yadav S.-R., Helariutta Y., He X.Q., Fukuda H., Kang J., Brady S.M., Patrick J.W., Sperry J., Yoshida A., López-Millán A.F., Grusak M.A. & Kachroo P. 2013. The Plant Vascular System: Evolution, Development and Functions. J. Integr. Plant Biol. 55: 294–388. doi: 10.1111/jipb.12041.

    Article  CAS  Google Scholar 

  • Nakamura T. & Cech T. 1998. Reversing Time: Origin of Telomerase. Cell 92: 587–590. doi: 10.1016/S0092-86740081123-X.

    Article  CAS  Google Scholar 

  • Oliver K. & Greene W. 2008. Transposable elements: powerful facilitators of evolution. BioEssays 31:703–714. Doi: 10.1002/bies.200800219.

    Article  Google Scholar 

  • Oliver K., McComb J. & Greene W. 2013. Transposable Elements: Powerful Contributors to Angiosperm Evolution and Diversity. Genome Biol. Evol. 5: 1886–1901. doi: 10.1093/gbe/evt141.

    Article  Google Scholar 

  • Ruiz-Medrano R., Xoconostle-Cázares B., Ham B., Li G. & Lucas W.J. 2011. Vascular expression in Arabidopsis is predicted by the frequency of CT/GA rich repeats in gene promoters. Plant J. 67: 130–144. doi: 10.1111/j.1365-313X.2011.04581.x.

    Article  CAS  Google Scholar 

  • Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.

    Article  CAS  Google Scholar 

  • Vicient C.M., Jääskeläinen M.J., Kalendar R. & Schulman A.H. 2001. Active retrotransposons are a common feature of grass genomes. Plant Physiol. 125: 1283–1292.

    Article  CAS  Google Scholar 

  • Volff J.N. 2006. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28: 913–922.

    Article  CAS  Google Scholar 

  • Wang W., Zheng H., Fan C., Li J., Shi J., Cai Z., Zhang G., Liu D., Zhang J., Vang S., Lu Z., Wong G.K., Long M. & Wang J. 2006. High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18: 1791–1802. doi: 10.1105/tpc.106.041905.

    Article  CAS  Google Scholar 

  • Wessler S. 1996. Plant retrotransposons: Turned on by stress. Curr. Biol. 6: 8 959–961.

    Article  CAS  Google Scholar 

  • **ong Y. & Eickbush T.H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    Article  CAS  Google Scholar 

  • Yamasaki K., Kigawa T., Inoue M., Watanabe S., Tateno M., Seki M., Shinozaki K. & Yokoyama S. 2008. Structures and evolutionary origins of plant-specific transcription factor DNAbinding domains. Plant Physiol. Biochem. 46: 394–401. doi: 10.1016/j.plaphy.2007.12.015.

    Article  CAS  Google Scholar 

  • Zhao M. & Ma J. 2013. Co-evolution of plant LTR-retrotransposons and their host genomes. Protein Cell 47: 493–501. doi: 10.1007/s13238-013-3037-6.

    Article  Google Scholar 

  • Zimmermann P., Hirsch-Hoffmann M., Hennig L. & Gruissem W. 2004. GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiol. 136: 2621–2632. doi: 10.1104/pp.104.046367.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACyT-México grants Nos. 109885 (to BX-C) and 156162 (to RR-M). SVG-G and ACM-N acknowledge doctoral fellowship support from CONAcyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ruiz-Medrano.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galván-Gordillo, S.V., Concepción Martínez-Navarro, A., Xoconostle-Cázares, B. et al. Bioinformatic analysis of Arabidopsis reverse transcriptases with a zinc-finger domain. Biologia 71, 1223–1229 (2016). https://doi.org/10.1515/biolog-2016-0145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0145

Key words

Navigation