Log in

Polyvalent interactions of HIV-gp120 protein and nanostructures of carbohydrate ligands

  • Original Article
  • Published:
NanoBiotechnology

Abstract

This paper presents the initial effort in anti-HIV infection using glycosphingolipid-based nanostructures. HIV infection of CD4 negative cells is initiated by the binding of the viral envelope glycoprotein gp120 to galactosylceramide (GalCer), a glycosphingolipid that serves as the cellular receptor for viral recognition. A series of nanostructures of GalCer are designed and produced using an AFM-based lithography method known as nanografting. The geometry dependence of recombinant gp120 binding to these nanostructures is monitored using high-resolution AFM imaging. Gp120 molecules are found to favor binding sites that allow for polyvalent interactions. Increased adsorption at the intersection of two lines, or between two parallel lines with matching separation for trimeric binding, strongly suggests that trivalent interactions are dominant in gp120-GalCer nanostructure interactions. Systematic distance-dependence studies, using parallel nanolines with various separations, reveal a separation of 4.8 nm, matching the separation of V3 loops in gp120 trimers. This investigation demonstrates that nanotechnology provides a powerful tool for investigating and guiding polyvalent interactions among biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yahi, N., Baghdiguian, S., Moreau, H., and Fantini, J. (1992), J. Virology 66, 4848–4854.

    CAS  Google Scholar 

  2. Harouse, J. M., Kunsch, C., Hartle, H. T., et al. (1989), J. Virology 63, 2527–2533.

    CAS  Google Scholar 

  3. Harouse, J. M., Bhat, S., Spitalnik, S. L., et al. (1991), Science 253, 320–323.

    Article  CAS  Google Scholar 

  4. McAlarney, T., Apostolski, S., Lederman, S., and Latov, N. (1994), J. Neurosci. Res. 37, 453–460.

    Article  CAS  Google Scholar 

  5. Brogi, A., Presentini, R., Solazzo, D., Piomboni, P., and Constantino-Ceccarini, E. (1996), Aids Res. Hum. Retroviruses 12, 483–489.

    CAS  Google Scholar 

  6. Brogi, A., Presentini, R., Piomboni, P., et al. (1995), J. Submicrosc. Cytol. Pathol. 27, 565–571.

    CAS  Google Scholar 

  7. Bhat, S., Spitalnik, S. L., Gonzalezscarano, F., and Silberberg, D. H. (1991), Proc. Natl. Acad. Sci. USA 88, 7131–7134.

    Article  CAS  Google Scholar 

  8. Earl, P. L., Doms, R. W., and Moss, B. (1990), Proc. Natl. Acad. Sci. USA 87, 648–652.

    Article  CAS  Google Scholar 

  9. Center, R. J., Leapman, R. D., Lebowitz, J., Arthur, L. O., Earl, P. L., and Moss, B. (2002), J. Virology 76, 7863–7867.

    Article  CAS  Google Scholar 

  10. Wyatt, R., Kwong, P. D., Desjardins, E., et al. (1998), Nature 393, 705–711.

    Article  CAS  Google Scholar 

  11. McReynolds, K. D., Hadd, M. J., and Gervay-Hague, J. (1999), Bioconjug. Chem. 10, 1021–1031.

    Article  CAS  Google Scholar 

  12. Nolting, B., Yu, J. J., Liu, G. Y., Cho, S. J., Kauzlarich, S., and Gervay-Hague, J. (2003), Langmuir 19, 6465–6473.

    Article  CAS  Google Scholar 

  13. Nuzzo, R. G. and Allara, D. L. (1983), J. Am. Chem. Soc. 105, 4481–4483.

    Article  CAS  Google Scholar 

  14. Nuzzo, R. G., Fusco, F. A., and Allara, D. L. (1987), J. Am. Chem. Soc. 109, 2358–2368.

    Article  CAS  Google Scholar 

  15. Hegner, M., Wagner, P., and Semenza, G. (1993), Surf. Sci. 291, 39–46.

    Article  CAS  Google Scholar 

  16. Wagner, P., Hegner, M., Guntherodt, H. J., and Semenza, G. (1995), Langmuir 11, 3867–3875.

    Article  CAS  Google Scholar 

  17. Chidsey, C. E. D., Loiacono, D. N., Sleator, T., and Nakahara, S. (1988), Surf. Sci. 200, 45–66.

    Article  CAS  Google Scholar 

  18. Woll, C., Chiang, S., Wilson, R. J., and Lippel, P. H. (1989), Phys. Rev. B 39, 7988–7991.

    Article  CAS  Google Scholar 

  19. Lang, C. A., Dovek, M. M., Nogami, J., and Quate, C. F. (1989), Surf. Sci. 224, L947-L955.

    Article  CAS  Google Scholar 

  20. Poirier, G. E. and Pylant, E. D. (1996), Science 272, 1145–1148.

    Article  CAS  Google Scholar 

  21. Poirier, G. E. (1997), Chem. Rev. 97, 1117–1127.

    Article  CAS  Google Scholar 

  22. Qian, Y. L., Yang, G. H., Yu, J. J., Jung, T. A., and Liu, G. Y. (2003), Langmuir 19, 6056–6065.

    Article  CAS  Google Scholar 

  23. Xu, S. and Liu, G. Y. (1997), Langmuir 13, 127–129.

    Article  Google Scholar 

  24. Xu, S. and Liu, G. Y. (1999), Scanning 21, 71–71.

    Google Scholar 

  25. Xu, S., Miller, S., Laibinis, P. E., and Liu, G. Y. (1999), Langmuir 15, 7244–7251.

    Article  CAS  Google Scholar 

  26. Liu, G. Y., Xu, S., and Qian, Y. L. (2000), Acc. Chem. Res. 33, 457–466.

    Article  CAS  Google Scholar 

  27. Amro, N. A., Xu, S., and Liu, G. Y. (2000), Langmuir 16, 3006–3009.

    Article  CAS  Google Scholar 

  28. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W. A. (1998), Nature 393, 648–659.

    Article  CAS  Google Scholar 

  29. Starcich, B. R., Hahn, B. H., Shaw, G. M., et al. (1986), Cell 45, 637–648.

    Article  CAS  Google Scholar 

  30. Leonard, C. K., Spellman, M. W., Riddle, L., Harris, R. J., Thomas, J. N., and Gregory, T. J. (1990), J. Biol. Chem. 265, 10,373–10,382.

    CAS  Google Scholar 

  31. Cook, D. G., Fantini, J., Spitalnik, S. L., and Gonzalezscarano, F. (1994), Virology 201, 206–214.

    Article  CAS  Google Scholar 

  32. Fantini, J., Hammache, D., Delezay, O., et al. (1997), J. Biol. Chem. 272, 7245–7252.

    Article  CAS  Google Scholar 

  33. Gelderblom, H. R., Hausmann, E. H. S., Ozel, M., Pauli, G., and Koch, M. A. (1987), Virology 156, 171–176.

    Article  CAS  Google Scholar 

  34. Ozel, M., Pauli, G., and Gelderblom, H. R. (1988), Arch. Virology 100, 255–266.

    Article  CAS  Google Scholar 

  35. Nermut, M. V., Grief, C., Hashmi, S., and Hockley, D. J. (1993), Aids Res. Hum. Retroviruses 9, 929–938.

    Article  CAS  Google Scholar 

  36. Kuznetsov, Y. G., Victoria, J. G., Robinson, W. E., and McPherson, A. (2003), J. Virology 77, 11,896–11,909.

    CAS  Google Scholar 

  37. Allen, M. J., Hud, N. V., Balooch, M., Tench, R. J., Siekhaus, W. J., and Balhorn, R. (1992), Ultramicroscopy 42, 1095–1100.

    Article  Google Scholar 

  38. Markiewicz, P. and Goh, M. C. (1995), J. Vacuum Sci. Tech. B 13, 1115–1118.

    Article  CAS  Google Scholar 

  39. Xu, S., Amro, N. A., and Liu, G. Y. (2001), Appl. Surf. Sci. 175, 649–655.

    Article  Google Scholar 

  40. Wadu-Mesthrige, K., Amro, N. A., Garno, J. C., Xu, S., and Liu, G. Y. (2001), Biophysi. J. 80, 1891–1899.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-yu Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, JJ., Nolting, B., Tan, Y.H. et al. Polyvalent interactions of HIV-gp120 protein and nanostructures of carbohydrate ligands. Nanobiotechnol 1, 201–210 (2005). https://doi.org/10.1385/NBT:1:2:201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NBT:1:2:201

Key Words

Navigation