Log in

10-Ethyl-acridine-2-sulfonyl Chloride: A New Derivatization Agent for Enhancement of Atmospheric Pressure Chemical Ionization of Estrogens in Urine

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The extensive metabolism and treatment of low doses of estrone (E1), estradiol (E2) and estriol (E3) in preclinical animal species necessitates a sensitive analytical method to identify or quantify the estrogens in biological matrixes. In this study, a highly sensitive and specific method based on the derivatization of E1, E2 and E3 with 10-ethyl-acridine-2-sulfonyl chloride (EASC) coupled with liquid chromatography-ion-trap mass spectrometry with APCI-MS (MRM) identification of estrogens has been developed. The EASC derivatization of E1, E2 and E3 introduces an acridine functional group into estrogen molecules. The carbonyl group in EASC core results in the formation of a phenoxide negative ion by the intramolecular keto-enol isomerization that can be accepted a [H]+ and readily ionized in commonly used LC mobile phases. Derivatives are sufficiently stable to be efficiently analyzed by LC-APCI-MS and show an intense protonated molecular ion at m/z [M+H]+ in positive-ion mode. The collision-induced dissociation of molecular ion forms a distinctive product ion at m/z 222.6, corresponding to the protonated 10-ethyl-acridine moiety. The selected reaction monitoring, based on the m/z [M+H]+ → m/z 222.6 transitions, is highly specific for estrogen derivatives. Therefore, the facile EASC derivatization coupling with LC-APCI-MS analysis allows the development of a highly sensitive and specific method for the identification of trace levels of estrogens in urine of root vole (Microtus oeconomus Pallas).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harbuz MS, Lightman SL (1992) J Endocrinol 134:327–339. doi:10.1677/joe.0.1340327

    Article  CAS  Google Scholar 

  2. Holst DV (1998) Adv Stud Behav 27:1–131. doi:10.1016/S0065-3454(08)60362-9

    Article  Google Scholar 

  3. Matejicek D, Kuban V (2008) J Chromatogr A 1192:248–253. doi:10.1016/j.chroma.2008.03.061

    Article  CAS  Google Scholar 

  4. Sachser N, Dürschlag M, Hirzel D (1998) Psychoneuroendocrino 23:891–904. doi:10.1016/S0306-4530(98)00059-6

    Article  CAS  Google Scholar 

  5. Moss AM, Clutton-Brock TH, Monfort SL (2001) Endocrinology 122:158–171. doi:10.1006/gcen.2001.7622

    Article  CAS  Google Scholar 

  6. Lopez de Alda MJ, Barcelo D (2001) Fresenius’ J Anal Chem 371:437–447. doi:10.1007/s002160101027

    Article  CAS  Google Scholar 

  7. Turner JW, Tolson P, Hamad N (2002) J Zoo Wildl Med 33:214–221

    Google Scholar 

  8. Ren BP, **a SZ, Li QF, Liang B, Qiu JH, Zhang SY (2003) Acta Zool Sin 3:325–331

    Google Scholar 

  9. Good T, Khan MZ, Lynch JW (2003) Physiol Behav 80:405–411. doi:10.1016/j.physbeh.2003.09.006

    Article  CAS  Google Scholar 

  10. Goymann W, Möstl E, Van’t Hof T, East ML, Heribert H (1999) Gen Comp Endocrinol 114:340–348. doi:10.1006/gcen.1999.7268

    Article  CAS  Google Scholar 

  11. Mateo JM, Cavigelli SA (2005) Physiol Biochem Zool 78:1069–1084. doi:10.1086/432855

    Article  CAS  Google Scholar 

  12. Guo T, Gu JH, Soldin OP, Singh RJ, Soldin SJ (2008) Clin Biochem 41:736–741. doi:10.1016/j.clinbiochem.2008.02.009

    Article  CAS  Google Scholar 

  13. Cao Z, Swift TA, West CA, Rosano TG, Rej R (2004) Clin Chem 50:160–165. doi:10.1373/clinchem.2003.023325

    Article  CAS  Google Scholar 

  14. Diaz-Cruz MS, Lopez de Alda MJ, Lopez R, Barcelo D (2003) J Mass Spectrom 38:917–923. doi:10.1002/jms.529

    Article  CAS  Google Scholar 

  15. Baronti C, Curini G, Di Corcia A, Gentili A, Samperi R (2000) Environ Sci Technol 34:5059–5066. doi:10.1021/es001359q

    Article  CAS  Google Scholar 

  16. Rodriquez-Mozaz S, de Alda MJL, Barcelo D (2004) Anal Chem 76:6998–7006. doi:10.1021/ac049051v

    Google Scholar 

  17. Isobe T, Shiraishi H, Yasuda M, Shinoda A, Suzuki H, Morita M (2003) J Chromatogr A 984:195–202. doi:10.1016/S0021-9673(02)01851-4

    Article  CAS  Google Scholar 

  18. Ingrand V, Herry G, Beausse J, Renee de Roubin M (2003) J Chromatogr A 1020:99–104. doi:10.1016/S0021-9673(03)00770-2

    Article  CAS  Google Scholar 

  19. Benijts T, Lambert W, De Leenheer A (2004) Anal Chem 76:704–711. doi:10.1021/ac035062x

    Article  CAS  Google Scholar 

  20. Lin YH, Chen CY, Wang GS (2007) Rapid Commun Mass Spectrom 21:1973–1983. doi:10.1002/rcm.3050

    Article  CAS  Google Scholar 

  21. Zhang F, Barteks MJ, Brodeur JC, McClymont EL, Woodburn KB (2004) Rapid Commun Mass Spectrom 18:2739–2742. doi:10.1002/rcm.1690

    Article  CAS  Google Scholar 

  22. Salvador A, Moretton C, Piram A, Faure R (2007) J Chromatogr A 1145:102–109. doi:10.1016/j.chroma.2007.01.055

    Article  CAS  Google Scholar 

  23. Anri MR, Bakhtiar R, Zhu B, Huskey S, Franklin RB, Evans DC (2002) Anal Chem 74:4136–4144. doi:10.1021/ac025712h

    Article  Google Scholar 

  24. Qin F, Zhao Y-Y, Sawyer MB, Li X-F (2008) Anal Chem 80:3404–3411. doi:10.1021/ac702613k

    Article  CAS  Google Scholar 

  25. Higashi T, Takayama N, Kyutoku M, Shimada K, Koh E, Namiki M (2006) Steroids 71:1007–1013. doi:10.1016/j.steroids.2006.08.003

    Article  CAS  Google Scholar 

  26. Nishiyama T, Hashimoto Y, Takahashi K (2004) Clin Cancer Res 10:7121–7126. doi:10.1158/1078-0432.CCR-04-0913

    Article  CAS  Google Scholar 

  27. Yamashita K, Okuyama M, Watanabe Y, Honma S, Kobayashi S, Numazawa M (2007) Steroids 72:819–827. doi:10.1016/j.steroids.2007.07.003

    Article  CAS  Google Scholar 

  28. Storoniak P, Krzymiński K, Bouźyk A, Koval’chuk EP, Blaźejowski J (2003) J Therm Anal Calorim 74:443–450. doi:10.1023/B:JTAN.0000005179.91819.6d

    Article  CAS  Google Scholar 

  29. Lagana A, Bacaloni A, Fago G, Marino A (2000) Rapid Commun Mass Spectrom 14:401–407. doi:10.1002/(SICI)1097-0231(20000331)14:6<401::AID-RCM883>3.0.CO;2-7

    Article  CAS  Google Scholar 

  30. You J, Zhang W, Zhang Q, Zhang L, Yan C, Zhang Y (2002) Anal Chem 74:261–269. doi:10.1021/ac010285d

    Article  CAS  Google Scholar 

  31. Kosoy A, Möller C, Perdomo D, Bubis J (2004) J Biochem Mol Biol 37(2):260–267

    CAS  Google Scholar 

  32. Chen RF (1968) Anal Biochem 25:412–416. doi:10.1016/0003-2697(68)90116-4

    Article  CAS  Google Scholar 

  33. D’Ascenzo G, Di Corcia A, Gentili A, Mancini R, Mastropasqua R, Nazzari M, Samperi R (2003) Sci Total Environ 302:199–209. doi:10.1016/S0048-9697(02)00342-X

    Article  Google Scholar 

  34. Higashi T, Takayama N, Nishio T, Taniguchi E, Shimada K (2006) Anal Bioanal Chem 386:658–665. doi:10.1007/s00216-006-0371-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Honghai Zhang for stimulating discussions throughout the study and thank Hongzhen Liu for excellent technical assistance in the laboratory. This work was supported by the National Science Foundation of China (No. 20075016) and by the 100 Talents Programme of The Chinese Academy of Sciences (No. 328)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **mao You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, J., Zhao, H., Sun, Z. et al. 10-Ethyl-acridine-2-sulfonyl Chloride: A New Derivatization Agent for Enhancement of Atmospheric Pressure Chemical Ionization of Estrogens in Urine. Chroma 70, 45–55 (2009). https://doi.org/10.1365/s10337-009-1101-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1101-4

Keywords

Navigation