Log in

Cloning and characterization of osteoclast precursors from the raw264.7 cell line

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB ligand (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell cultures, which are poorly suited to molecular and transgene studies because of the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study, we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP)-positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP-positive multinuclear cells. Clones capable of forming large TRAP-positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Amer, Y.; Ross, F. P.; Edwards, J.; Teitelbaum, S. L. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J. Clin. Invest. 100:1557–1565; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Abu-Amer, Y.; Erdmann, J.; Alexopoulou, L.; Kollias, G.; Ross, F. P.; Teitelbaum, S. L. Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J. Biol. Chem. 275:27307–27310; 2000.

    PubMed  CAS  Google Scholar 

  • Armstrong, A. P.; Tometsko, M. E.; Glaccum, M.; Sutherland, C. L.; Cosman, D.; Dougall, W. C. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J. Biol. Chem. 277:44347–44356; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Battaglino, R.; Kim, D.; Fu, J.; Vaage, B.; Fu, X. Y.; Stashenko, P. c-myc is required for osteoclast differentiation. J. Bone Miner. Res. 17:763–773; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Battaglino, R.; Fu, J.; Spate, U.; Ersoy, U.; Joe, M.; Sedaghat, L.; Stashenko, P. Serotonin regulates osteoclast differentiation through its transporter. J. Bone Miner. Res. 19:1420–1431; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Collin-Osdoby, P.; Yu, X.; Zheng, H.; Osdoby, P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol. Med. 80:153–166; 2003.

    PubMed  CAS  Google Scholar 

  • Crotti, T. N.; Flannery, M.; Walsh, N. C.; Fleming, J. D.; Goldring, S. R.; McHugh, K. P. NFATc1 regulation of the human beta(3) integrin promoter in osteoclast differentiation. Gene; 2006.

  • Hattersley, G. Chambers, T. J. Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation. Endocrinology 124:1689–1696; 1989.

    PubMed  CAS  Google Scholar 

  • Hsu, H.; Lacey, D. L.; Dunstan, C. R., et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96:3540–3545; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, M.; Ross, F. P.; Erdmann, J. M.; Abu-Amer, Y.; Wei, S.; Teitelbaum, S. L. Tumor necrosis factor alpha regulates alpha(v)beta5 integrin expression by osteoclast precursors in vitro and in vivo. Endocrinology 141:284–290; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kong, Y. Y.; Yoshida, H.; Sarosi, I., et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development, and lymph-node organogenesis. Nature 397:315–323; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kurihara, N.; Tatsumi, J.; Arai, F.; Iwama, A.; Suda, T. Macrophage-stimulating protein (MSP) and its receptor, RON, stimulate human osteoclast activity but not proliferation: effect of MSP distinct from that of hepatocyte growth factor. Exp. Hematol. 26:1080–1085; 1998.

    PubMed  CAS  Google Scholar 

  • Lee, S. K.; Goldring, S. R.; Lorenzo, J. Expression of the calcitonin receptor in bone marrow cell cultures and in bone: a specific marker of the differentiated osteoclast that is regulated by calcitonin Endocrinology 136:4572–4581; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. W.; Han, S. I.; Kim, H. H.; Lee, Z. H. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB. J. Biochem. Mol. Biol. 35:371–376; 2002.

    PubMed  Google Scholar 

  • Li, J.; Sarosi, I.; Yan, X. Q., et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97:1566–1571; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. M.; Mitsuhashi, T.; Wojciechowicz, D., et al. Molecular identity and cellular distribution of advanced glycation end product receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc. Natl. Acad. Sci. USA 93:11047–11052; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.; Shi, Z.; Silveira, A.; Liu, J.; Sawadogo, M.; Yang, H.; Feng, X. Involvement of upstream stimulatory factors 1 and 2 in RANKL-induced transcription of tartrate-resistant acid phosphatase gene during osteoclast differentiation. J. Biol. Chem. 278:20603–20611; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T.; Fritsch, E. F.; Sambrook, J. In: Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1982.

    Google Scholar 

  • Matsumoto, M.; Kogawa, M.; Wada, S.; Takayanagi, H.; Tsujimoto, M.; Katayama, S.; Hisatake, K.; Nogi, Y. Essential role of p38 mitogenactivated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J. Biol. Chem. 279:45969–45979; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, K.; Galson, D. L.; Zhao, C., et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279:26475–26480; 2004.

    Article  PubMed  CAS  Google Scholar 

  • McHugh, K. P.; Kitazawa, S.; Teitelbaum, S. L.; Ross, F. P. Cloning and characterization of the murine beta(3) integrin gene promoter: identification of an interleukin-4 responsive element and regulation by STAT-6. J. Cell. Biochem. 81:320–332; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, N.; Kinosaki, M.; Yamaguchi, K.; Shima, N.; Yasuda, H.; Yano, K.; Morinaga, T.; Higashio, K. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem. Biophys. Res. Commun. 253:395–400; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, J. M.; Elliott, J.; Gillespie, M. T.; Martin, T. J. A combination of osteoclast differentiation factor and macrophage- colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139:4424–4427; 1998a.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, J. M.; Fujikawa, Y.; McGee, J. O.; Athanasou, N. A. Rodent osteoblast-like cells support osteoclastic differentiation of human cord blood monocytes in the presence of M-CSF and 1,25 dihydroxyvitamin D3. Int. J. Biochem. Cell Biol. 29:173–179; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, J. M.; Neale, S.; Fujikawa, Y.; McGee, J. O.; Athanasou, N. A. Human osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells. Calcif. Tissue Int. 62:527–531; 1998b.

    Article  PubMed  CAS  Google Scholar 

  • Ralph, P.; Nakoinz, I. Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J. Immunol. 119:950–954; 1977.

    PubMed  CAS  Google Scholar 

  • Raschke, W. C.; Baird, S.; Ralph, P.; Nakoinz, I. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261–267; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Ravasi, T.; Wells, C.; Forest, A.; Underhill, D. M.; Wainwright, B. J.; Aderem, A.; Grimmond, S.; Hume, D. A. Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J. Immunol. 168:44–50; 2002.

    PubMed  CAS  Google Scholar 

  • Rhee, C. H.; Hess, K.; Jabbur, J., et al. cDNA expression array reveals heterogeneous gene expression profiles in three glioblastoma cell lines. Oncogene 18:2711–2717; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Shioi, A.; Ross, F. P.; Teitelbaum, S. L. Enrichment of generated murine osteoclasts. Calcif. Tissue Int. 55:387–394; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Smid-Koopman, E.; Blok, L. J.; Chadha-Ajwani, S.; Helmerhorst, T. J.; Brinkmann, A. O.; Huikeshoven, F. J. Gene expression profiles of human endometrial cancer samples using a cDNA-expression array technique: assessment of an analysis method. Br. J. Cancer 83:246–251; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, N.; Akatsu, T.; Udagawa, N.; Sasaki, T.; Yamaguchi, A.; Moseley, J. M.; Martin, T. J.; Suda, T. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123:2600–2602; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi, H.; Kim, S.; Koga, T., et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3:889–901; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C. D.; Frazier-Jessen, M. R.; Rawat, R.; Nordan, R. P.; Brown, R. T. Evaluation of methods for transient transfection of a murine macrophage cell line, RAW 264.7. Biotechniques 27:824–826, 828–830, 832; 1999.

    PubMed  CAS  Google Scholar 

  • Wei, S.; Teitelbaum, S. L.; Wang, M. W.-H.; Ross, F. P. Receptor activator of nuclear factor-κB ligand activates nuclear factor-κB in osteoclast precursors. Endocrinology 142:1290–1295; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wong, B. R.; Josien, R.; Lee, S. Y.; Vologodskaia, M.; Steinman, R. M.; Choi, Y. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J. Biol. Chem. 273:28355–28359; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, H.; Shima, N.; Nakagawa, N., et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139:1329–1337; 1998.

    Article  PubMed  Google Scholar 

  • Yu, X.; Huang, Y.; Collin-Osdoby, P.; Osdoby, P. CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J. Bone Miner. Res. 19:2065–2077; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. H.; Heulsmann, A.; Tondravi, M. M.; Mukherjee, A.; Abu-Amer, Y. Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 276:563–568; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Mchugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuetara, B.L.V., Crotti, T.N., O'Donoghue, A.J. et al. Cloning and characterization of osteoclast precursors from the raw264.7 cell line. In Vitro Cell.Dev.Biol.-Animal 42, 182–188 (2006). https://doi.org/10.1290/0510075.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0510075.1

Key words

Navigation