Log in

A Sonic Hedgehog Pathway Score to Predict the Outcome of Resected Non-Small Cell Lung Cancer Patients

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Mutations and deregulations in components of the Hedgehog (Hh) pathway have been associated with cancer onset and tumor growth in different malignancies, but their role in non-small cell lung cancer (NSCLC) remains unclear. This study aims to investigate the expression pattern of the main components of the Hh pathway in tumor and adjacent normal tissue biopsies of resected NSCLC patients.

Methods

The relative expression of GLI1, PTCH1, SHH, and SMO was analyzed by quantitative polymerase chain reaction (PCR) in a cohort of 245 NSCLC patients. Results were validated in an independent cohort of NSCLC patients from The Cancer Genome Atlas (TCGA).

Results

We found that SMO and GLI1 were overexpressed in the tumor compared with normal-paired tissue, whereas PTCH1 and SHH were underexpressed. In addition, patients with higher expression levels of PTCH1 presented better outcomes. A gene expression score, called the Hedgehog Score, was calculated using a multivariable model including analyzed components of the Hh signaling pathway. NSCLC patients with a high Hedgehog Score had significantly shorter relapse-free survival (RFS) and overall survival (OS) than patients with a low score, especially at stage I of the disease. Similarly, patients in the adenocarcinoma (ADC) subcohort had shorter RFS and OS. Multivariate Cox analysis exhibited that the Hedgehog Score is an independent prognostic biomarker for OS in both the entire training cohort and the ADC subcohort. The Hedgehog Score was validated in an independent cohort of NSCLC patients from TCGA, which confirmed its prognostic value.

Conclusions

Our results provide relevant prognostic data for NSCLC patients and support further studies on the Hh pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  Google Scholar 

  2. Hirsch FR, Suda K, Wiens J, Bunn PAJ. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 2016;388(10048):1012–24.

    Article  Google Scholar 

  3. Rizvi NA, Peters S. Immunotherapy for unresectable stage III Non-Small-Cell lung cancer. N Engl J Med. 2017;377:1986–8.

    Article  Google Scholar 

  4. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23.

    Article  CAS  Google Scholar 

  5. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.

    Article  CAS  Google Scholar 

  6. Raman V, Yang C-FJ, Deng JZ, D’Amico TA. Surgical treatment for early stage non-small cell lung cancer. J Thorac Dis. 2018;10(Suppl 7):898–904.

    Article  Google Scholar 

  7. Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells – a clinical update. Nat Rev Clin Oncol. 2020;17(4):204–32.

    Article  Google Scholar 

  8. Velcheti V, Govindan R. Hedgehog signaling pathway and lung cancer. J Thorac Oncol. 2007;2(1):7–10.

    Article  Google Scholar 

  9. Peng T, Frank DB, Kadzik RS, et al. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature. 2015;526(7574):578–82.

    Article  CAS  Google Scholar 

  10. Metcalfe C, Siebel CW. The hedgehog hold on homeostasis. Cell Stem Cell. 2015;17(5):505–6.

    Article  CAS  Google Scholar 

  11. Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond SMOothened. Oncotarget. 2015;6(16):13899–913.

    Article  Google Scholar 

  12. Hahn H, Wicking C, Zaphiropoulos PG, et al. Mutations of the human homolog of drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85(6):841–51.

    Article  CAS  Google Scholar 

  13. Thalakoti S, Geller T. Basal cell nevus syndrome or Gorlin syndrome. Handb Clin Neurol. 2015;132:119–28.

    Article  Google Scholar 

  14. Shanley S, McCormack C. Diagnosis and management of hereditary basal cell skin cancer. Recent Results Cancer Res. 2016;205:191–212.

    Article  Google Scholar 

  15. Park K-S, Martelotto LG, Peifer M, et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med. 2011;17(11):1504–8.

    Article  CAS  Google Scholar 

  16. Kaur G, Reinhart RA, Monks A, et al. Bromodomain and hedgehog pathway targets in small cell lung cancer. Cancer Lett. 2016;371(2):225–39.

    Article  CAS  Google Scholar 

  17. Giroux Leprieur E, Antoine M, Vieira T, et al. Role of the Sonic Hedgehog pathway in thoracic cancers. Rev Mal Respir. 2015;32(8):800–8.

    Article  CAS  Google Scholar 

  18. Bai X-Y, Zhang X-C, Yang S-Q, et al. Blockade of hedgehog signaling synergistically increases sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer cell lines. PLoS One. 2016;11(3):e0149370.

    Article  Google Scholar 

  19. Edge SB, Compton CC. The American joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.

    Article  Google Scholar 

  20. Pfaffl MW, Duquenne M, François JM, et al. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):45e–45.

    Article  Google Scholar 

  21. Hammerman PS, Lawrence MS, Voet D, et al. Cancer genome atlas research network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.

    Article  CAS  Google Scholar 

  22. Collisson EA, Campbell JD, Brooks AN, Cancer Genome Atlas Research Network, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.

    Article  CAS  Google Scholar 

  23. Zhang J, Baran J, Cros A, et al. International cancer genome consortium data portal: a one-stop shop for cancer genomics data. Database (Oxford). 2011;2011:bar026.

    Article  Google Scholar 

  24. Lossos IS, Czerwinski DK, Alizadeh AA, et al. Prediction of survival in diffuse Large-B-Cell lymphoma based on the expression of six genes. N Engl J Med. 2004;35018350(29):1828–37.

    Article  Google Scholar 

  25. Usó M, Jantus-Lewintre E, Calabuig-Fariñas S, et al. Analysis of the prognostic role of an immune checkpoint score in resected non-small cell lung cancer patients. Oncoimmunology. 2017;6(1):e1260214.

    Article  Google Scholar 

  26. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.

    Article  CAS  Google Scholar 

  27. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.

    Article  CAS  Google Scholar 

  28. Thress KS, Paweletz CP, Felip E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21(6):560–2.

    Article  CAS  Google Scholar 

  29. Planchard D, Loriot Y, Andre F, et al. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann Oncol. 2015;26(10):2073–8.

    Article  CAS  Google Scholar 

  30. Ichihara E, Westover D, Meador CB, et al. SFK/FAK signaling attenuates osimertinib efficacy in both drug-sensitive and drug-resistant models of EGFR-Mutant lung cancer. Cancer Res. 2017;77(11):2990–3000.

    Article  CAS  Google Scholar 

  31. Lim SM, Kim HR, Lee J-S, et al. Open-Label, multicenter, Phase II study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J Clin Oncol. 2017;35(23):2613–8.

    Article  CAS  Google Scholar 

  32. Drilon A, Siena S, Ou S-HI, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK Inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7(4):400–9.

    Article  CAS  Google Scholar 

  33. Yu HA, Planchard D, Lovly CM. Sequencing therapy for genetically defined subgroups of non-small cell lung cancer. Am Soc Clin Oncol Educ Book. 2018;38:726–39.

    Article  Google Scholar 

  34. Raju S, Joseph R, Sehgal S. Review of checkpoint immunotherapy for the management of non-small cell lung cancer. ImmunoTargets Ther. 2018;7:63–75.

    Article  CAS  Google Scholar 

  35. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46.

    Article  CAS  Google Scholar 

  36. Herreros-Pomares A. Identification, culture and targeting of cancer stem cells. Life (Basel). 2022;12:184.

    CAS  Google Scholar 

  37. Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of ViSMOdegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9.

    Article  CAS  Google Scholar 

  38. Lear JT, Migden MR, Lewis KD, et al. Long-term efficacy and safety of sonidegib in patients with locally advanced and metastatic basal cell carcinoma: 30-month analysis of the randomized phase 2 BOLT study. J Eur Acad Dermatol Venereol. 2018;32(3):372–81.

    Article  CAS  Google Scholar 

  39. Pietanza MC, Litvak AM, Varghese AM, et al. A phase I trial of the Hedgehog inhibitor, sonidegib (LDE225), in combination with etoposide and cisplatin for the initial treatment of extensive stage small cell lung cancer. Lung Cancer. 2016;99:23–30.

    Article  Google Scholar 

  40. Jeng K-S, Sheen I-S, Jeng W-J, Yu M-C, Hsiau H-I, Chang F-Y. High expression of Sonic Hedgehog signaling pathway genes indicates a risk of recurrence of breast carcinoma. Onco Targets Ther. 2013;7:79–86.

    Article  Google Scholar 

  41. Walter K, Omura N, Hong S-M, et al. Overexpression of SMOothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clin cancer Res Off J Am Assoc Cancer Res. 2010;16(6):1781–9.

    Article  CAS  Google Scholar 

  42. Tao Y, Mao J, Zhang Q, Li L. Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer. Oncol Lett. 2011;2(5):995–1001.

    CAS  Google Scholar 

  43. Campione E, Di Prete M, Lozzi F, et al. High-risk recurrence basal cell carcinoma: focus on hedgehog pathway inhibitors and review of the literature. Chemotherapy. 2020;65(1–2):2–10.

    Article  CAS  Google Scholar 

  44. Archer TC, Weeraratne SD, Pomeroy SL. Hedgehog-GLI pathway in medulloblastoma. J Clin Oncol. 2012;30(17):2154–6.

    Article  CAS  Google Scholar 

  45. Chung JH, Bunz F. A loss-of-function mutation in PTCH1 suggests a role for autocrine hedgehog signaling in colorectal tumorigenesis. Oncotarget. 2013;4(12):2208–11.

    Article  Google Scholar 

  46. Wang C-Y, Chang Y-C, Kuo Y-L, et al. Mutation of the PTCH1 gene predicts recurrence of breast cancer. Sci Rep. 2019;9(1):16359.

    Article  Google Scholar 

  47. Savani M, Guo Y, Carbone DP, Csiki I. Sonic hedgehog pathway expression in non-small cell lung cancer. Ther Adv Med Oncol. 2012;4(5):225–33.

    Article  CAS  Google Scholar 

  48. Gialmanidis IP, Bravou V, Amanetopoulou SG, Varakis J, Kourea H, Papadaki H. Overexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer. 2009;66(1):64–74.

    Article  Google Scholar 

  49. Lemjabbar-Alaoui H, Dasari V, Sidhu SS, et al. Wnt and hedgehog are critical mediators of cigarette SMOke-Induced lung cancer. PLoS One. 2006;1(1):e93.

    Article  Google Scholar 

  50. Raz G, Allen KE, Kingsley C, et al. Hedgehog signaling pathway molecules and ALDH1A1 expression in early-stage non-small cell lung cancer. Lung Cancer. 2012;76(2):191–6.

    Article  Google Scholar 

  51. Huang L, Walter V, Hayes DN, Onaitis M. Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res. 2014;20(6):1566–75.

    Article  CAS  Google Scholar 

  52. Jiang WG, Ye L, Ruge F, et al. Expression of Sonic Hedgehog (SHH) in human lung cancer and the impact of YangZheng **aoJi on SHH-mediated biological function of lung cancer cells and tumor growth. Anticancer Res. 2015;35(3):1321–31.

    Google Scholar 

  53. Kim JE, Kim H, Choe J-Y, Sun P, Jheon S, Chung J-H. High expression of sonic hedgehog signaling proteins is related to the favorable outcome, EGFR mutation, and lepidic predominant subtype in primary lung adenocarcinoma. Ann Surg Oncol. 2013;20(3):570–6.

    Article  Google Scholar 

  54. Zhao Y, Li Y, Lu H, Chen J, Zhang Z, Zhu Z-Z. Association of copy number loss of CDKN2B and PTCH1 with poor overall survival in patients with pulmonary squamous cell carcinoma. Clin Lung Cancer. 2011;12(5):328–34.

    Article  CAS  Google Scholar 

  55. Huang E, Ishida S, Pittman J, et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet. 2003;34(2):226–30.

    Article  CAS  Google Scholar 

  56. Raponi M, Zhang Y, Yu J, et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 2006;66(15):7466–72.

    Article  CAS  Google Scholar 

  57. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  Google Scholar 

  58. Herreros-Pomares A, De-Maya-Girones JD, Calabuig-Fariñas S, Lucas R, Martínez A, Pardo-Sánchez JM, et al. Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis. 2019;10(9):660.

    Article  Google Scholar 

  59. Sanmartín E, Sirera R, Usó M, et al. A gene signature combining the tissue expression of three angiogenic factors is a prognostic marker in early-stage non-small cell lung cancer. Ann Surg Oncol. 2014;21(2):612–20.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant no. CB16/12/00350 from the Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc) and Grant No. PI18/00266 from the Instituto de Salud Carlos III (ISCIII).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Herreros-Pomares PhD or Eloísa Jantus-Lewintre PhD.

Ethics declarations

Disclosure

Alejandro Herreros-Pomares, Paula Doria, Sandra Gallach, Marina Meri-Abad, Ricardo Guijarro, Silvia Calabuig-Fariñas, Carlos Camps, and Eloísa Jantus-Lewintre declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 838 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herreros-Pomares, A., Doria, P., Gallach, S. et al. A Sonic Hedgehog Pathway Score to Predict the Outcome of Resected Non-Small Cell Lung Cancer Patients. Ann Surg Oncol 30, 1225–1235 (2023). https://doi.org/10.1245/s10434-022-12565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-12565-2

Navigation