Log in

Analysis of Opioid Use in Patients Undergoing Open Versus Robotic Gastrectomy

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Minimally invasive, robotic gastrectomy is associated with better short-term outcomes and quicker functional recovery. However, the degree to which the robotic approach influences postoperative pain and opioid use after gastrectomy is unknown. Our primary aim was to determine whether the robotic approach to gastrectomy reduces postoperative opioid use compared with the open approach.

Methods

Patients who underwent gastrectomy (November 2018 to September 2021) were identified retrospectively. Clinical characteristics, short-term surgical outcomes, oral morphine equivalent (OME) use, and pain scores were collected. Both groups were managed through an enhanced recovery program in the perioperative period.

Results

Of 81 patients, 50 underwent open and 31 underwent robotic gastrectomy. Compared with open gastrectomy patients, robotic gastrectomy patients had longer surgery time (360 vs. 288 min), less blood loss (50 vs. 138 mL), and shorter hospital stay (4 vs. 6 days) (all medians, P < 0.001). Robotic gastrectomy patients used lower OMEs on postoperative days 0–4 (all P < 0.05) and in total for days 0–4 (total mean dose 65.0 vs. 169.5 mg; P < 0.001) than did open gastrectomy patients. The robotic gastrectomy patients were prescribed a lower mean OME dose than the open gastrectomy patients (19.0 vs. 29.0 mg, respectively; P = 0.001). Multivariable analysis showed that robotic approach was associated with lower opioid use (odds ratio 3.70; 95% CI 1.01–14.3; P = 0.049).

Conclusions

Compared with open gastrectomy, robotic gastrectomy reduces opioid use in the early postoperative period and is associated with fewer OME discharge prescriptions and shorter hospital stay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE, Verma M, Weeden S, Chua YJ, Participants MT. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Batran S-E, Homann N, Pauligk C, Goetze TO, Meiler J, Kasper S, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. The Lancet. 2019;393:1948–57.

    Article  Google Scholar 

  4. Leong T, Smithers BM, Michael M, Gebski V, Boussioutas A, Miller D, et al. TOPGEAR: a randomised phase III trial of perioperative ECF chemotherapy versus preoperative chemoradiation plus perioperative ECF chemotherapy for resectable gastric cancer (an international, intergroup trial of the AGITG/TROG/EORTC/NCIC CTG). BMC Cancer. 2015;15:532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kang YK, Yook JH, Park YK, Lee JS, Kim YW, Kim JY, et al. PRODIGY: a phase III study of neoadjuvant docetaxel, oxaliplatin, and S-1 plus surgery and adjuvant S-1 versus surgery and adjuvant S-1 for resectable advanced gastric cancer. J Clin Oncol. 2021;39:2903–13.

    Article  CAS  PubMed  Google Scholar 

  6. Uyama I, Suda K, Nakauchi M, Kinoshita T, Noshiro H, Takiguchi S, et al. Clinical advantages of robotic gastrectomy for clinical stage I/II gastric cancer: a multi-institutional prospective single-arm study. Gastric Cancer. 2019;22:377–85.

    Article  PubMed  Google Scholar 

  7. Terashima M, Tokunaga M, Tanizawa Y, Bando E, Kawamura T, Miki Y, et al. Robotic surgery for gastric cancer. Gastric Cancer. 2015;18:449–57.

    Article  PubMed  Google Scholar 

  8. Tolstrup R, Funder JA, Lundbech L, Thomassen N, Iversen LH. Perioperative pain after robot-assisted versus laparoscopic rectal resection. Int J Colorectal Dis. 2018;33:285–9.

    Article  PubMed  Google Scholar 

  9. Vennix S, Pelzers L, Bouvy N, Beets GL, Pierie JP, Wiggers T, et al. Laparoscopic versus open total mesorectal excision for rectal cancer. Cochrane Database Syst Rev:CD005200, 2014

  10. Blanton E, Lamvu G, Patanwala I, Barron KI, Witzeman K, Tu FF, et al. Non-opioid pain management in benign minimally invasive hysterectomy: a systematic review. Am J Obstet Gynecol. 2017;216:557–67.

    Article  PubMed  Google Scholar 

  11. Keller DS, Zhang J, Chand M. Opioid-free colorectal surgery: a method to improve patient & financial outcomes in surgery. Surg Endosc. 2019;33:1959–66.

    Article  PubMed  Google Scholar 

  12. Knight AW, Habermann EB, Ubl DS, Zielinski MD, Thiels CA. Opioid utilization in minimally invasive versus open inguinal hernia repair. Surgery. 2019;166:752–7.

    Article  PubMed  Google Scholar 

  13. Bastawrous AL, Shih IF, Li Y, Cleary RK. Minimally invasive sigmoidectomy for diverticular disease decreases inpatient opioid use: results of a propensity score-matched study. Am J Surg. 2020;220:421–7.

    Article  PubMed  Google Scholar 

  14. Blumenthaler AN, Robinson KA, Kruse BC, Munder K, Ikoma N, Mansfield PF, et al. Implementation of a perioperative-enhanced recovery protocol in patients undergoing open gastrectomy for gastric cancer. J Surg Oncol. 2021;124:780–90.

    Article  PubMed  Google Scholar 

  15. Colvin LA, Bull F, Hales TG. Perioperative opioid analgesia—when is enough too much? A review of opioid-induced tolerance and hyperalgesia. The Lancet. 2019;393:1558–68.

    Article  Google Scholar 

  16. Newhook TE, Vreeland TJ, Dewhurst WL, Wang X, Prakash L, Feng C, et al. Clinical factors associated with practice variation in discharge opioid prescriptions after pancreatectomy. Ann Surg. 2020;272:163–9.

    Article  PubMed  Google Scholar 

  17. Soffin EM, Wetmore DS, Beckman JD, Sheha ED, Vaishnav AS, Albert TJ, et al. Opioid-free anesthesia within an enhanced recovery after surgery pathway for minimally invasive lumbar spine surgery: a retrospective matched cohort study. Neurosurg Focus. 2019;46:E8.

    Article  PubMed  Google Scholar 

  18. Weston E, Noel M, Douglas K, Terrones K, Grumbine F, Stone R, et al. The impact of an enhanced recovery after minimally invasive surgery program on opioid use in gynecologic oncology patients undergoing hysterectomy. Gynecol Oncol. 2020;157:469–75.

    Article  CAS  PubMed  Google Scholar 

  19. Kane S, Opioid (opiate) equianagesia conversion calculator, Mar 12, 2017.

  20. American Pain Society, Principles of analgesic use in the treatment of acute pain and cancer pain. 6th ed., Glenview, IL, 2008

  21. Pereira J, Lawlor P, Vigano A, Dorgan M, Bruera E. Equianalgesic dose ratios for opioids: a critical review and proposals for long-term dosing. J Pain Symptom Manage. 2001;22:672–87.

    Article  CAS  PubMed  Google Scholar 

  22. Anderson R, Saiers JH, Abram S, Schlicht C. Accuracy in equianalgesic dosing: conversion dilemmas. J Pain Symptom Manage. 2001;21:397–406.

    Article  CAS  PubMed  Google Scholar 

  23. Patanwala AE, Duby J, Waters D, Erstad BL. Opioid conversions in acute care. Ann Pharmacother. 2007;41:255–66.

    Article  CAS  PubMed  Google Scholar 

  24. Opioid Data Analysis and Resources, Centers for disease control and prevention, national center for injury prevention and control.

  25. Dart RC, Surratt HL, Cicero TJ, Parrino MW, Severtson SG, Bucher-Bartelson B, et al. Trends in opioid analgesic abuse and mortality in the United States. N Engl J Med. 2015;372:241–8.

    Article  PubMed  CAS  Google Scholar 

  26. Davies B, Brummett CM. Anchoring to zero exposure: opioid-free minimally invasive surgery. Ann Surg. 2020;271:37–8.

    Article  PubMed  Google Scholar 

  27. Skolnick P. The opioid epidemic: crisis and solutions. Annu Rev Pharmacol Toxicol. 2018;58:143–59.

    Article  CAS  PubMed  Google Scholar 

  28. Wunsch H, Wijeysundera DN, Passarella MA, Neuman MD. Opioids prescribed after low-risk surgical procedures in the United States, 2004–2012. JAMA. 2016;315:1654–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee JS, Hu HM, Edelman AL, Brummett CM, Englesbe MJ, Waljee JF, et al. New persistent opioid use among patients with cancer after curative-intent surgery. J Clin Oncol. 2017;35:4042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tuminello S, Schwartz RM, Liu B, Mhango G, Wisnivesky J, Flores R, et al. Opioid use after open resection or video-assisted thoracoscopic surgery for early-stage lung cancer. JAMA Oncol. 2018;4:1611–3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lillemoe HA, Newhook TE, Vreeland TJ, Arvide EM, Dewhurst WL, Grubbs EG, et al. Educating surgical oncology providers on perioperative opioid use: results of a departmental survey on perceptions of opioid needs and prescribing habits. Ann Surg Oncol. 2019;26:2011–8. https://doi.org/10.1245/s10434-019-07321-y.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim BJ, Lillemoe HA, Newhook TE, Dewhurst WL, Arvide EM, Katz MHG, et al. Educating surgical oncology providers on perioperative opioid use: A departmental survey 1 year after the intervention. J Surg Oncol. 2020;122:547–54.

    Article  PubMed  Google Scholar 

  33. Lillemoe HA, Tzeng CD. ASO author reflections: opioid prescribing in surgical oncology-institutional opportunities for educational interventions. Ann Surg Oncol. 2019;26:731–2. https://doi.org/10.1245/s10434-019-07837-3.

    Article  PubMed  Google Scholar 

  34. Lillemoe HA, Newhook TE, Aloia TA, Grubbs EG, Chang GJ, Katz MHG, et al. Perceptions of opioid use and prescribing habits in oncologic surgery: a survey of the society of surgical oncology membership. J Surg Oncol. 2020;122:1066–73.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Newhook TE, Tzeng CD. ASO author reflections: opportunities for reducing initial opioid exposure in cancer surgery patients. Ann Surg Oncol. 2019;26:749–50. https://doi.org/10.1245/s10434-019-07876-w.

    Article  PubMed  Google Scholar 

  36. Newhook TE, Dewhurst WL, Vreeland TJ, Wang X, Soliz J, Speer BB, et al. Inpatient opioid use after pancreatectomy: opportunities for reducing initial opioid exposure in cancer surgery patients. Ann Surg Oncol. 2019;26:3428–35. https://doi.org/10.1245/s10434-019-07528-z.

    Article  PubMed  Google Scholar 

  37. Hill MV, Stucke RS, Billmeier SE, Kelly JL, Barth RJ Jr. Guideline for discharge opioid prescriptions after inpatient general surgical procedures. J Am Coll Surg. 2018;226:996–1003.

    Article  PubMed  Google Scholar 

  38. Anuj Shah CJH, Bradley CM, Characteristics of initial prescription episodes and likelihood of long-term opioid use — United States, 2006–2015.

  39. Day RW, Newhook TE, Dewhurst WL, Arvide EM, Bruno ML, Vauthey JN, et al. Assessing the 5x-multiplier calculation to reduce discharge opioid prescription volumes after inpatient surgery. JAMA Surg. 2020;155:1166–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim BJ, Newhook TE, Blumenthaler A, Chiang YJ, Aloia TA, Roland CL, et al. Sustained reduction in discharge opioid volumes through provider education: Results of 1168 cancer surgery patients over 2 years. J Surg Oncol. 2021;124:143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kelly KJ, Selby L, Chou JF, Dukleska K, Capanu M, Coit DG, et al. Laparoscopic versus open gastrectomy for gastric adenocarcinoma in the West: a case-control study. Ann Surg Oncol. 2015;22:3590–6. https://doi.org/10.1245/s10434-015-4381-y.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim YM, Hyung WJ. Current status of robotic gastrectomy for gastric cancer: comparison with laparoscopic gastrectomy. Updates Surg. 2021;73:853–63.

    Article  PubMed  Google Scholar 

  43. Irino T, Matsuda S, Wada N, Kawakubo H, Kitagawa Y. Essential updates 2019/2020: Perioperative and surgical management of gastric cancer. Ann Gastroenterol Surg. 2021;5:162–72.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Katai H, Mizusawa J, Katayama H, Morita S, Yamada T, Bando E, et al. Survival outcomes after laparoscopy-assisted distal gastrectomy versus open distal gastrectomy with nodal dissection for clinical stage IA or IB gastric cancer (JCOG0912): a multicentre, non-inferiority, phase 3 randomised controlled trial. Lancet Gastroenterol Hepatol. 2020;5:142–51.

    Article  PubMed  Google Scholar 

  45. Kim HH, Han SU, Kim MC, Kim W, Lee HJ, Ryu SW, et al. Effect of laparoscopic distal gastrectomy vs open distal gastrectomy on long-term survival among patients with stage I gastric cancer: the KLASS-01 randomized clinical trial. JAMA Oncol. 2019;5:506–13.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu F, Huang C, Xu Z, Su X, Zhao G, Ye J, et al. morbidity and mortality of laparoscopic vs open total gastrectomy for clinical stage I gastric cancer: the CLASS02 multicenter randomized clinical trial. JAMA Oncol. 2020;6:1590–7.

    Article  PubMed  Google Scholar 

  47. Hyung WJ, Yang HK, Han SU, Lee YJ, Park JM, Kim JJ, et al. A feasibility study of laparoscopic total gastrectomy for clinical stage I gastric cancer: a prospective multi-center phase II clinical trial, KLASS 03. Gastric Cancer. 2019;22:214–22.

    Article  CAS  PubMed  Google Scholar 

  48. Katai H, Mizusawa J, Katayama H, Kunisaki C, Sakuramoto S, Inaki N, et al. Single-arm confirmatory trial of laparoscopy-assisted total or proximal gastrectomy with nodal dissection for clinical stage I gastric cancer: Japan clinical oncology group study JCOG1401. Gastric Cancer. 2019;22:999–1008.

    Article  CAS  PubMed  Google Scholar 

  49. Yu J, Huang C, Sun Y, Su X, Cao H, Hu J, et al. effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer: the CLASS-01 randomized clinical trial. JAMA. 2019;321:1983–92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee HJ, Hyung WJ, Yang HK, Han SU, Park YK, An JY, et al. Short-term outcomes of a multicenter randomized controlled trial comparing laparoscopic distal gastrectomy with D2 lymphadenectomy to open distal gastrectomy for locally advanced gastric cancer (KLASS-02-RCT). Ann Surg. 2019;270:983–91.

    Article  PubMed  Google Scholar 

  51. Hyung WJ, Yang HK, Park YK, Lee HJ, An JY, Kim W, et al. long-term outcomes of laparoscopic distal gastrectomy for locally advanced gastric cancer: the KLASS-02-RCT randomized clinical trial. J Clin Oncol. 2020;38:3304–13.

    Article  PubMed  Google Scholar 

  52. van der Wielen N, Straatman J, Daams F, Rosati R, Parise P, Weitz J, et al. Open versus minimally invasive total gastrectomy after neoadjuvant chemotherapy: results of a European randomized trial. Gastric Cancer. 2021;24:258–71.

    Article  PubMed  CAS  Google Scholar 

  53. van der Veen A, Brenkman HJF, Seesing MFJ, Haverkamp L, Luyer MDP, Nieuwenhuijzen GAP, et al. Laparoscopic Versus Open Gastrectomy for Gastric Cancer (LOGICA): a multicenter randomized clinical trial. J Clin Oncol. 2021;39:978–89.

    Article  PubMed  CAS  Google Scholar 

  54. Ikoma N, Mansfield PF, Badgwell BD. Robotic D2 total gastrectomy with fluorescent lymphatic map** for gastric cancer: effective use of the 4th arm. J Gastrointest Surg. 2021;25:1354–6.

    Article  PubMed  Google Scholar 

  55. Ikoma N, Badgwell BD, Mansfield P. Fluorescent-image guidance in robotic subtotal gastrectomy. Ann Surg Oncol. 2020;27:5322. https://doi.org/10.1245/s10434-020-08523-5.

    Article  PubMed  Google Scholar 

  56. Ikoma N, Badgwell BD, Mansfield PF. Robotic proximal gastrectomy with double-tract reconstruction for gastroesophageal junction cancer. J Gastrointest Surg. 2021;25:1357–8.

    Article  PubMed  Google Scholar 

  57. Ikoma N, Kim MP, Tran Cao HS, Prakash LP, Maxwell JE, Tzeng CD, et al. Early experience of a robotic foregut surgery program at a cancer center: video of shared steps in robotic pancreatoduodenectomy and gastrectomy. Ann Surg Oncol. 2021. https://doi.org/10.1016/j.hpb.2021.06.234.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Suda K, Nakauchi M, Inaba K, Ishida Y, Uyama I. Robotic surgery for upper gastrointestinal cancer: current status and future perspectives. Dig Endosc. 2016;28:701–13.

    Article  PubMed  Google Scholar 

  59. Strong VE, Russo AE, Nakauchi M, Schattner M, Selby LV, Herrera G, et al. Robotic gastrectomy for gastric adenocarcinoma in the USA: insights and oncologic outcomes in 220 patients. Ann Surg Oncol. 2021;28:742–50. https://doi.org/10.1245/s10434-020-08834-7.

    Article  PubMed  Google Scholar 

  60. van Boxel GI, Ruurda JP, van Hillegersberg R. Robotic-assisted gastrectomy for gastric cancer: a European perspective. Gastric Cancer. 2019;22:909–19.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim BJ, Caudle AS, Gottumukkala V, Aloia TA. The impact of postoperative complications on a timely return to intended oncologic therapy (riot): the role of enhanced recovery in the cancer journey. Int Anesthesiol Clin. 2016;54:e33-46.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Laura L. Russell, scientific editor, Research Medical Library, for editing this article.

Funding

Supported by the NIH/NCI under award no. P30CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruhiko Ikoma MD, MS.

Ethics declarations

Disclosure

NI received a research grant from Intuitive Surgical.

Ethical statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and regional) and with the Helsinki Declaration of 1975 as revised in 1983. Because this was a retrospective study of deidentified patients, no informed consent was required. Ethics approval for this work was obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, Y., Witt, R.G., Prakash, L.R. et al. Analysis of Opioid Use in Patients Undergoing Open Versus Robotic Gastrectomy. Ann Surg Oncol 29, 5861–5870 (2022). https://doi.org/10.1245/s10434-022-11836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-11836-2

Navigation