Log in

Therapeutic Effect of a Novel Nano-Drug Delivery System on Membranous Glomerulonephritis Rat Model Induced by Cationic Bovine Serum

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In order to explore a novel high efficacy drug delivery system for membranous glomerulonephritis (MGN), a complex chronic inflammation, methylprednisolone bovine serum albumin nanoparticles (ME BSA NPs) were designed. The nanoparticles were prepared by desolvation—chemical crosslinking method and its physicochemical characterizations were conducted. The experimental MGN rat models induced by cationic bovine serum albumin were established by a modified Border’s method and applied in the pharmacodynamics study of ME BSA NPs. The results showed that the particle size, particle dispersion index, and entrapment efficiency of ME BSA NPs were 131.1 ± 3.4 nm, 0.159 ± 0.036, and 71.51 ± 1.74%, respectively. In addition, the image of transmission electron microscopy showed that the ME BSA NPs were the relatively uniform spherical particles. In the in vivo pharmacodynamics study, compared with saline group and SOLU-MEDROL® group, that the ME BSA NPs group was significantly reduced the levels of 24 h urinary protein (P < 0.01) and serum creatinine (P < 0.05). Consequently, these outcomes indicated that the nanoparticles we studied were a promising drug delivery system for the MGN disease, and it may be also useful for other complex chronic inflammations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vezzani A, Ruegg S. The pivotal role of immunity and inflammatory processes in epilepsy is increasingly recognized: introduction. Epilepsia. 2011;52(Suppl 3):1–4. https://doi.org/10.1111/j.1528-1167.2011.03028.x.

    Article  PubMed  Google Scholar 

  2. Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013;339(6166):166–72. https://doi.org/10.1126/science.1230720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–52. https://doi.org/10.1038/nature01320.

    Article  PubMed  CAS  Google Scholar 

  4. Azadegan-Dehkordi F, Bagheri N, Shirzad H, Rafieian-Kopaei M. The role of Th1 and Th17 cells in glomerulonephritis. Journal of nephropathology. 2015;4(2):32–7. https://doi.org/10.12860/jnp.2015.07.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buraczynska M, Jozwiak L, Ksiazek P, Borowicz E, Mierzicki P. Interleukin-6 gene polymorphism and faster progression to end-stage renal failure in chronic glomerulonephritis. Translational research: the journal of laboratory and clinical medicine. 2007;150(2):101–5. https://doi.org/10.1016/j.trsl.2007.03.003.

    Article  CAS  Google Scholar 

  6. Santos FR. Membranous glomerulonephritis: new insights in pathophysiology and therapeutic approach. Jornal Brasileiro de Nefrologia. 2014;36(1):59–62. https://doi.org/10.5935/0101-2800.20140011.

    Article  PubMed  Google Scholar 

  7. Song J, Wang Y, Liu C, Huang Y, He L, Cai X, et al. Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-kappaB pathway. Food Funct. 2016;7(4):2006–15. https://doi.org/10.1039/c5fo01017a.

  8. Border WA, W HJ, Kamil ES, Cohen AH. Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen. J Clin Invest. 1982;69(2):451–61. https://doi.org/10.1172/JCI110469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kerjaschki DF. M G. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J Exp Med. 1983;157(2):667–86. https://doi.org/10.1084/jem.157.2.667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Spies CM, Strehl C, van der Goes MC, Bijlsma JWJ, Buttgereit F. Glucocorticoids. Best Pract Res Clin Rheumatol. 2011;25(6):891–900. https://doi.org/10.1016/j.berh.2011.11.002.

    Article  PubMed  CAS  Google Scholar 

  11. He Y, Yi W, Suino-Powell K, Zhou XE, Tolbert WD, Tang X, et al. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res. 2014;24(6):713–26. https://doi.org/10.1038/cr.2014.52.

  12. Cho B-S, Park S-S, Kim S-D, Won KY, Lim S-J. Clinical and histologic response to methylprednisolone pulse therapy in glomerulonephritis. Fetal Pediatr Pathol. 2010;29(4):271–90. https://doi.org/10.3109/15513811003786335.

    Article  PubMed  CAS  Google Scholar 

  13. Ou ZL, Nakayama K, Natori Y, Doi N, Saito T, Natori Y. Effective methylprednisolone dose in experimental crescentic glomerulonephritis. Am J Kidney Dis: Off J Natl Kidney Foundation. 2001;37(2):411–7. https://doi.org/10.1053/ajkd.2001.21329.

    Article  CAS  Google Scholar 

  14. Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002;96(1):23–43. https://doi.org/10.1016/S0163-7258(02)00297-8.

  15. Wang Z, Tiruppathi C, Cho J, Minshall RD, Malik AB. Delivery of nanoparticle: complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life. 2011;63(8):659–67. https://doi.org/10.1002/iub.485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dafeng Chu JG, Wang Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano. 2015;9:11800–11. https://doi.org/10.1021/acsnano.5b05583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang Z, Li J, Cho J, Malik AB. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol. 2014;9(3):204–10. https://doi.org/10.1038/nnano.2014.17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hsu LC, Enzler T, Seita J, Timmer AM, Lee CY, Lai TY, et al. IL-1beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKbeta. Nat Immunol. 2011;12(2):144–50. https://doi.org/10.1038/ni.1976.

  19. Wilhelmsen K, Mesa KR, Prakash A, Xu F, Hellman J. Activation of endothelial TLR2 by bacterial lipoprotein upregulates proteins specific for the neutrophil response. Innate Immun. 2012;18(4):602–16. https://doi.org/10.1177/1753425911429336.

    Article  PubMed  CAS  Google Scholar 

  20. Pillay J, Hietbrink F, Koenderman L, Leenen LP. The systemic inflammatory response induced by trauma is reflected by multiple phenotypes of blood neutrophils. Injury. 2007;38(12):1365–72. https://doi.org/10.1016/j.injury.2007.09.016.

    Article  PubMed  CAS  Google Scholar 

  21. Weber C, K J, Langer K. Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm. 2000;196(2):197–200. https://doi.org/10.1016/S0378-5173(99)00420-2.

    Article  PubMed  CAS  Google Scholar 

  22. Galisteo-Gonzalez F, Molina-Bolivar JA. Systematic study on the preparation of BSA nanoparticles. Colloids Surf B: Biointerfaces. 2014;123:286–92. https://doi.org/10.1016/j.colsurfb.2014.09.028.

    Article  PubMed  CAS  Google Scholar 

  23. Yedomon B, Fessi H, Charcosset C. Preparation of bovine serum albumin (BSA) nanoparticles by desolvation using a membrane contactor: a new tool for large scale production. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2013;85(3 Pt a):398–405. https://doi.org/10.1016/jejpb.2013.06.014.

    Article  CAS  Google Scholar 

  24. Gao J, Zhang T, Kang Z, Ting W, Xu L, Yin D. The F0F1 ATP synthase regulates human neutrophil migration through cytoplasmic proton extrusion coupled with ATP generation. Mol Immunol. 2017;90:219–26. https://doi.org/10.1016/j.molimm.2017.08.004.

    Article  PubMed  CAS  Google Scholar 

  25. Crouser ED, Shao G, Julian MW, Macre JE, Shadel GS, Tridandapani S, et al. Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors. Crit Care Med. 2009;37(6):2000–9. https://doi.org/10.1097/CCM.0b013e3181a001ae.

  26. Silva MT. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol. 2009;87(1):93–106. https://doi.org/10.1189/jlb.0809549.

    Article  CAS  Google Scholar 

  27. Kobayashi M, M K, Yoh K, Kondoh M, Iwabuchi S, Hirayama K, et al. Effects of FK506 on experimental membranous glomerulonephritis induced by cationized bovine serum albumin in rats. Nephrol Dial Transplant. 1998;13(10):2501–8. https://doi.org/10.1093/ndt/13.10.2501.

  28. Zhang S, **n H, Li Y, Zhang D, Shi J, Yang J, et al. Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evid Based Complement Alternat Med: eCAM. 2013;2013:819296. https://doi.org/10.1155/2013/819296.

    Article  PubMed  Google Scholar 

  29. Rohiwal SS, Satvekar RK, Tiwari AP, Raut AV, Kumbhar SG, Pawar SH. Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles. Appl Surf Sci. 2015;334:157–64. https://doi.org/10.1016/j.apsusc.2014.08.170.

    Article  CAS  Google Scholar 

  30. Salis A, Bostrom M, Medda L, Cugia F, Barse B, Parsons DF, et al. Measurements and theoretical interpretation of points of zero charge/potential of BSA protein. Langmuir: ACS J Surf Colloids. 2011;27(18):11597–604. https://doi.org/10.1021/la2024605.

    Article  CAS  Google Scholar 

  31. Wacker M. Nanocarriers for intravenous injection—the long hard road to the market. Int J Pharm. 2013;457(1):50–62. https://doi.org/10.1016/j.ijpharm.2013.08.079.

    Article  PubMed  CAS  Google Scholar 

  32. Yokomori H, Oda M, Yoshimura K, Hibi T. Recent advances in liver sinusoidal endothelial ultrastructure and fine structure immunocytochemistry. Micron. 2012;43(2–3):129–34. https://doi.org/10.1016/j.micron.2011.08.002.

    Article  PubMed  CAS  Google Scholar 

  33. Hoshino Y, K H, Furuya K, Haberaecker WW, Lee SH, Kodama T, et al. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc Natl Acad Sci U S A. 2012;109(1):33–8. https://doi.org/10.1073/pnas.1112828109.

  34. Matar HE, Peterson P, Sangle S, D'Cruz DP. Correlation of 24-hour urinary protein quantification with spoturine protein:creatinine ratio in lupus nephritis. Lupus. 2012;21(8):836–9. https://doi.org/10.1177/0961203312437438.

    Article  PubMed  CAS  Google Scholar 

  35. Ronco P, Debiec H. Pathogenesis of membranous nephropathy: recent advances and future challenges. Nat Rev Nephrol. 2012;8(4):203–13. https://doi.org/10.1038/nrneph.2012.35.

    Article  PubMed  CAS  Google Scholar 

  36. Shankland SJ. New insights into the pathogenesis of membranous nephropathy. Kidney Int. 2000;57(3):1204–5. https://doi.org/10.1046/j.1523-1755.2000.00950.x.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the program of supporting career development of young and middle-aged teachers from Shenyang Pharmaceutical University (ZQN2015011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nggang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, X., Jiang, Z., Liu, M. et al. Therapeutic Effect of a Novel Nano-Drug Delivery System on Membranous Glomerulonephritis Rat Model Induced by Cationic Bovine Serum. AAPS PharmSciTech 19, 2195–2202 (2018). https://doi.org/10.1208/s12249-018-1034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1034-z

KEY WORDS

Navigation