Log in

Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kelm MA, Johnson JC, Robbins RJ. High-performance liquid chromatography separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary phase. J Agr Food Chem. 2006;54:1571–6.

    Article  CAS  Google Scholar 

  2. Yamakoshi J, Saito M, Kataoka S. Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food Chem Toxicol. 2002;40:599–607.

    Article  CAS  PubMed  Google Scholar 

  3. Serrano J, Puupponen-Pimiä R, Dauer A. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutri Food Res. 2009;53:S310–29.

    Article  Google Scholar 

  4. Joshi SS, Kuszynski CA, Bagchi M, Bagchi D. Chemopreventive effects of grape seed proanthocyanidin extract on Chang liver cells. Toxicology. 2000;15:83–90.

  5. Yu J, Ahmedna M, Goktepe I. Potential of peanut skin phenolic extract as antioxidative and antibacterial agent in cooked and raw ground beef. Int J Food Sci Tech. 2010;45:1337–44.

    Article  CAS  Google Scholar 

  6. Yamakoshi J, Saito M, Kataoka S. Procyanidins-rich extract from grape seeds prevents cataract formation in hereditary cataractous (ICR/f) rats. J Agr Food Chem. 2002;50:4983–8.

    Article  CAS  Google Scholar 

  7. Pinent M, Blay M, Blade MC. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology. 2004;145:4985–90.

    Article  CAS  PubMed  Google Scholar 

  8. Pallarès V, Calay D, Cedó L. Additive, antagonistic, and synergistic effects of procyanidins and polyunsaturated fatty acids over inflammation in RAW 264.7 macrophages activated by lipopolysaccharide. Nutrition. 2012;28:447–57.

    Article  PubMed  Google Scholar 

  9. Dinicola S, Cucina A, Pasqualato A. Antiproliferative and apoptotic effects triggered by grape seed extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines. Int J Mol Sci. 2012;13:651–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer AS, Yi OS, Pearson DA. Inhibition of human low-density lipoprotein oxidation in relation to composition of phenolic antioxidants in grapes (Vitis vinifera). J Agr Food Chem. 1997;45:1638–43.

    Article  CAS  Google Scholar 

  11. Sudheer KM, Santosh KK. Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-κB signaling in human epidermal keratinocytes. Free Radical Bio Med. 2006;40:1603–14.

    Article  Google Scholar 

  12. Cinta B, Gerard A, Anna AA, Begoña M, et al. Proanthocyanidins in health and disease. Fitoterapia. 2016;42:5–12.

    Google Scholar 

  13. Davidov-Pardo G, Arozarena I, Marín-Arroyo MR. Stability of polyphenolic extracts from grape seeds after thermal treatments. Eur Food Res Technol. 2011;232:211–20.

    Article  CAS  Google Scholar 

  14. Panchognula R. Transdermal delivery of drugs. Indian J Pharmocol. 1997;140:140–56.

    Google Scholar 

  15. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliver Rev. 2004;56:675–711.

    Article  CAS  Google Scholar 

  16. Cosco D, Celia C, Cilurzo F. Colloidal carriers for the enhanced delivey through the skin. Expert Opin Drug Del. 2008;5:737–55.

    Article  CAS  Google Scholar 

  17. Gangwar M, Singh R, Goel RK. Recent advances in various emerging vescicular systems: an overview. Asian Pac J Trop Med. 2012;2:S1176–88.

    Article  Google Scholar 

  18. Nandure HP, Puranik P, Giram P, Lone V. Ethosome: a novel drug carrier. Int J Pharm Res Allied Sci. 2013;2:18–30.

    Google Scholar 

  19. El Maghraby GMM, Williams AC, Barry BW. Drug interaction and location in liposomes: correlation with polar surface areas. Int J Pharm. 2005;292:179–85.

    Article  PubMed  Google Scholar 

  20. Abdellatif AA, Tawfeek HM. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech. 2015. doi:10.1208/s12249-015-0441-7.

    PubMed  Google Scholar 

  21. Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B, et al. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2016. doi:10.1208/s12249-016-0489-z.

    Google Scholar 

  22. Liu D, Hu HY, Lin ZX, Chen DW, Zhu YY, et al. Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J Photoch Photobio B. 2013;127:8–17.

    Article  CAS  Google Scholar 

  23. Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomed. 2015;10:5837–51.

    Article  CAS  Google Scholar 

  24. Elhissi AMA, Giebultowicz J, Stec AA. Nebulization of ultradeformable liposomes: the influence of aerosolization mechanism and formulation excipients. Int J Pharm. 2012;436:519–26.

    Article  CAS  PubMed  Google Scholar 

  25. Chaudharya H, Kohlib K, Kumara V. A novel nano-carrier transdermal gel against inflammation. Int J Pharm. 2014;465:175–86.

    Article  Google Scholar 

  26. Shammaa RN, Elsayed I. Transfersomal lyophilized gel of buspirone HCl: formulation, evaluation and statistical optimization. J Liposome Res. 2013;23:244–54.

    Article  Google Scholar 

  27. The United States Pharmacopeial Convention. Maritime Pine Extract: Maritime Pine Extract is prepared from the pulverized Maritime Pine using suitable solvents. It contains between 65 and 75 percent of procyanidins, calculated on the dried basis. United States Pharmacopoeia. 2008;32:1050–1.

  28. Cevc G, Gebauer D, Stieber J. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. BBA-Biomembranes. 1998;1368:201–15.

    Article  CAS  PubMed  Google Scholar 

  29. Khan MA, Pandit J, Sultana Y, Sultana S, Ali A. Novel carbopol based transfersomal gel of 5-fluorouracil for skin cancer treatment: in vitro characterization and in vivo study. Drug Deliv. 2015;22:1–8.

    Article  Google Scholar 

  30. Montanari J, Roncaglia DI, Lado LA. Avoiding failed reconstitution of ultradeformable liposomes upon dehydration. Int J Pharm. 2009;372:184–90.

    Article  CAS  PubMed  Google Scholar 

  31. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Stability testing of new drug substance and product. ICH Topic Q1A (R2). 2003;9–23.

  32. Chinese Pharmacopoeia Commission. The guidance for the stability test of active pharmaceutical ingredient and dosage forms. Pharmacopoeia of the People’s Republic of China 2015 Edition IV. 2015;354–6.

  33. Organisation for Economic Co-operation and Development. Guidance document for the conduct of skin absorption studies. OECD series on testing and assessment: number 28. 2004;11–30

  34. Betz G, Nowbakht P, Imboden R, Imanidis G. Heparin penetration into and permeation through human skin from aqueous and liposomal formulations in vitro. Int J Pharm. 2001;228:147–59.

    Article  CAS  PubMed  Google Scholar 

  35. Kuan YC, Lee WT, Hung CL, Yang C, Sheu F. Investigating the function of a novel protein from Anoectochilus formosanus which induced macrophage differentiation through TLR4-mediated NF-κB activation. Int J Immunopharmacol. 2012;14:114–20.

    Article  CAS  Google Scholar 

  36. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med. 1996;2:933–56.

    Article  Google Scholar 

  37. Gao Y, Chen L. Nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel for reversal of multidrug resistance. Int J Pharm. 2012;422:390–7.

    Article  PubMed  Google Scholar 

  38. Jain S, Jain P, Umamaheshwari RB. Transfersomes-a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev Ind Pharm. 2003;29:1013–26.

    Article  CAS  PubMed  Google Scholar 

  39. Tasi LM, Liu DZ, Chen WY. Microcalorimetric investigation of the interaction of polysorbate surfactants with unilamellar phosphatidylcholines liposomes. Colloid Surface A. 2003;213:7–14.

    Article  CAS  Google Scholar 

  40. Pawlikowska-Pawlega B, Gruszecki WI, Misiak L, et al. Modification of membranes by quercetin, a naturally occurring flavonoid, via its incorporation in the polar head group. BBA Biomembrane. 1768;2007:2195–204.

    Google Scholar 

  41. Wojtowicz K, PawlikowskaPawlega B, Gawron A, Misiak LE, Gruszecki WI. Modifying effect of quercetin on the lipid membrane. Folia Histochem Cytobiol. 1996;34:48–50.

    Google Scholar 

  42. Jatha J, Mishra AK. Effect of ionic and neutral surfactants on the properties of phospholipid vesicles: investigation using fluorescent probes. J Photoch Photobio. 1997;104:173–8.

    Article  Google Scholar 

  43. El Maghraby GMM, Williams AC, Barry BW. Skin delivery of oestradiol from lipid vesicles: importance of liposome structure. Int J Pharm. 2000;204:159–69.

    Article  PubMed  Google Scholar 

  44. Deng Q, Yue Y, Hu X, Hou X. The interaction between ultraflexible nano-liposome of salmon calcitonin and surfactants. Chinese J New Drug. 2003;12:924–7.

    CAS  Google Scholar 

  45. vanden Berge BA, Wertz PW, Junginger HE, Bouwstra JA. Elasticity of vesicles assessed by electron spin resonance. Electron microscopy and extrusion measurement. Int J Pharm. 2001;217:13–24.

    Article  Google Scholar 

  46. Li M, Li YJ, Liu WW, Li RL, et al. The preparation of Cistanche phenylethanoid glycosides liquid proliposomes: optimized formulation, characterization and proliposome drip** pills in vitro and in vivo evaluation. Eur J Pharm Sci. 2016. doi:10.1016/j.ejps.2016.07.020.

    Google Scholar 

  47. Song CK, Balakrishnan P, Shim CK. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloid Surf B. 2012;92:299–304.

    Article  CAS  Google Scholar 

  48. Kirjavainen M, Mönkkönen J, Saukkosaari M. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J Control Release. 1999;58:207–14.

    Article  CAS  PubMed  Google Scholar 

  49. Honeywell-Nguyen PL, De Graaff AM, Groenink HWW. The in vivo and in vitro interactions of elastic and rigid vesicles with human skin. BBA-Gen Subjects. 2002;1573:130–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Tian** Jianfeng Natural Product R&D Co., Ltd., China, for supplying us with procyanidins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Han.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Li, R., Liu, Q. et al. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery. AAPS PharmSciTech 18, 1823–1832 (2017). https://doi.org/10.1208/s12249-016-0661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0661-5

KEY WORDS

Navigation