Background

Nasopharyngeal carcinoma (NPC) is a common head and neck cancer arising from the nasopharynx epithelium, with the highest prevalence in southern China [1, 14, 24]. Recently, the TIPE family members have been recognized as inflammation, immunity, and cancer regulators [25, 26]. TIPE, the first identified member of this family, can regulate apoptosis and promote tumor metastasis and proliferation [27, 28]. TIPE1 was reported to be essential for TNF-α-induced cell death [29]. TIPE2 can maintain immune hemostasis and function as a tumor suppressor [30, 31]. TIPE3 was found to be upregulated in lung cancer, esophageal cancer, cervical cancer, and colon adenocarcinoma. The unique NT region of TIPE3, which is not seen in other members of the TIPE family, is believed to be responsible for its unique ability to promote cell growth and survival. Furthermore, TIPE3 lacking the NT region appeared to exert a tumor suppression effect [14]. In the present study, we found that ectopic expression of TIPE3 significantly suppressed NPC cell proliferation and invasion in vitro and in vivo, indicating that TIPE3 might act as a tumor suppressor in NPC and play a dual role in cancer progression. In fact, many genes are reported to act as either tumor suppressors or oncogenes in different cancer types. Nevertheless, the underlying mechanisms for these contradictory roles of TIPE3 in different cancers remain to be determined.

At present, the clinical decision making for NPC patients mainly relies on the TNM staging system [3], even though it cannot accurately select those at high risk of treatment failure. Over the past decades, numerous studies have focused on develo** efficient prognostic molecular biomarkers, such as EBV-DNA, miRNAs, and gene expression [32,33,34]. However, there is still no effective predictive model for NPC patients. Recently, increasing evidences has demonstrated that both the single-gene loci and the genome-wide profiling indicated a strong potential to predict outcomes in malignant tumors. For single-gene loci, hypermethylation of CDKN2A in colorectal cancer, MGMT in glioblastoma, BRCA1 in breast cancer were reported to be associated with poor clinical outcomes [35,36,37]. For genome-wide profiling, the methylation gene panel as a prognostic biomarker of prostate, lung, and other cancers have also been identified [38, 39]. We previously constructed a six-hypermethylated gene panel to predict NPC patients’ survival [12]. However, the clinical applications of several aberrantly methylated genes in NPC remain unknown. In this study, our findings demonstrated that NPC patients with high TIPE3 CGI methylation level exhibited a significantly shorter OS, DFS, and DMFS compared with patients with low methylation level. These results implied that the TIPE3 CGI methylation level could help to identify a subgroup of patients with high risk of treatment failure and guide more individualized therapy.

Conclusions

This study demonstrated that TIPE3 mRNA downregulation was correlated with its CGI hypermethylation in human solid cancers. NPC patients with low TIPE3 CGI methylation levels were at low risk of treatment failure, which might be caused by the tumor suppression effects of TIPE3. Therefore, TIPE3 is a potential novel prognostic biomarker and therapeutic target for NPC patients.