Background

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer-related death in the world [1]. Infection with hepatitis B virus (HBV) or hepatitis C virus (HCV) is the major etiologic factor for HCC [2]. A strong correlation exists between cirrhosis and hepatocarcinogenesis, and most patients with HCC have pre-existing cirrhosis. Chronic hepatitis virus infection commonly leads to fibrosis followed by cirrhosis and finally hepatocellular carcinoma. The diagnosis and certainly the follow-up of liver diseases such as cirrhosis and HCC remains a heavily debated problem [36]. Alpha-fetoprotein (AFP) is commonly used as a serum biomarker, but its level is normal in one-third of HCC patients [7, 8]. The gold standard for diagnosis of HCC is histopathological examination of liver biopsy. Thus, a sensitive and specific non-invasive serological marker is needed for the early diagnosis of HCC and for monitoring its treatment.

Abnormal protein glycosylation is associated with malignant transformation of cells. The N-linked sugar chains are altered in various tumors, and certain glycan structures are well-known markers of tumor progression [912]. Most serum N-linked glycoproteins are synthesized by the liver or by B-lymphocytes, and any changes in serum total N-glycans could reflect an alteration of liver or B-lymphocyte physiology. Thus, changes in the quantity and type of N-glycans in serum could be utilized for the non-invasive diagnosis of liver diseases. We and others have reported that N-glycan profiles generated by DSA-FACE (DNA Sequencer Assisted - Fluorophore Assisted Carbohydrate Electrophoresis) could be used as a non-invasive marker for HCV-related liver cirrhosis [13, 14], HBV-related fibrosis [Full size image