Log in

RNA-Seq-Based Transcriptome Analysis of Changes in Gene Expression Linked to Human Pregnancy Outcome After In Vitro Fertilization—Embryo Transfer

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

To promote the pregnancy rate of in vitro fertilization–embryo transfer (IVF-ET), we proposed to examine the differentially expressed gene during pregnancy success and failure. We used high-sequencing technology to characterize and compare the gene expression profiles of pregnancy success and pregnancy failure patients during 3 different stages: before IVF-ET (stage I), after ovarian stimulation (stage II), and day 15 after embryo transfer (stage III). Selected data from RNA-sequencing experiments were validated by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 282, 208, and 372 genes in stages I, II, and III, respectively, were differentially expressed between pregnancy success and pregnancy failure, respectively. Through confirmation with qRT-PCR, compared to pregnancy failure, we demonstrated much lower level of major histocompatibility complex, human leukocyte antigen class I A, and an much higher level of human leukocyte antigen, class II DQ α1 (HLA-DQA1) in pregnancy success, although the HLA-DQA1 decreased with development duration of pregnancy. Interleukin 1β increased with the development duration of pregnancy in pregnancy failure group and was much higher than that in pregnancy success group. Hemoglobin δ decreased with the development duration of pregnancy in pregnancy failure women and maintained in a lower level in stage I and II but dramatically increased to a much higher level in stage III in pregnancy success women. Minichromosome maintenance complex component 4 significantly increased in stage III in pregnancy failure but not in pregnancy success women. The altered expression of genes implicated in immune response and inflammation, oocyte meiosis, rhythmic process, and so on. Therefore, the current results provide a strong basis for future research to expound the molecular mechanism co** with pregnancy outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santos MA, Kuijk EW, Macklon NS. The impact of ovarian stimulation for IVF on the develo** embryo. Reproduction. 2010;139(1):23–34.

    CAS  PubMed  Google Scholar 

  2. Zarei A, Parsanezhad ME, Younesi M, et al. Intrauterine administration of recombinant human chorionic gonadotropin before embryo transfer on outcome of in vitro fertilization/intracytoplasmic sperm injection: a randomized clinical trial. Iran J Reprod Med. 2014;12(1):1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Santibanez A, Garcia J, Pashkova O, et al. Effect of intrauterine injection of human chorionic gonadotropin before embryo transfer on clinical pregnancy rates from in vitro fertilisation cycles: a prospective study. Reprod Biol Endocrinol. 2014;12:9.

    PubMed  PubMed Central  Google Scholar 

  4. Mansour R, Tawab N, Kamal O, et al. Intrauterine injection of human chorionic gonadotropin before embryo transfer significantly improves the implantation and pregnancy rates in in vitro fertilization/intracytoplasmic sperm injection: a prospective randomized study. Fertil Steril. 2011;96(6):1370–1374. e1.

    CAS  PubMed  Google Scholar 

  5. Brown M, Davies IM, Moffat CF, Craft JA. Application of SSH and a macroarray to investigate altered gene expression in Mytilus edulis in response to exposure to benzo[a]pyrene. Marine Environ Res. 2006;62 suppl:S128–S135.

    CAS  Google Scholar 

  6. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12(10):671–682.

    CAS  PubMed  Google Scholar 

  7. Kang SM, Lee SW, Jeong HJ, et al. Clinical outcomes of elective single morula embryo transfer versus elective single blastocyst embryo transfer in IVF-ET. J Assist Reprod Genet. 2012;29(5):423–428.

    PubMed  PubMed Central  Google Scholar 

  8. Zhu L, ** Q, Zhang H, Li Y, Ai J, ** L. Blastocyst culture and cryopreservation to optimize clinical outcomes of warming cycles. Reprod Biomed Online. 2013;27(2):154–160.

    PubMed  Google Scholar 

  9. Papanikolaou EG, D’Haeseleer E, Verheyen G, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod. 2005;20(11):3198–3203.

    PubMed  Google Scholar 

  10. Rajan P, Sudbery IM, Villasevil ME, et al. Next-generation sequencing of advanced prostate cancer treated with androgendeprivation therapy. Eur Urol. 2014;66(1):32–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schroeder A, Mueller O, Stocker S, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3.

    PubMed  PubMed Central  Google Scholar 

  12. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–1111.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140.

    CAS  PubMed  Google Scholar 

  15. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.

    PubMed  PubMed Central  Google Scholar 

  16. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(database issue):D277–D280.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36(database issue):D480–D484.

    CAS  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(—Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    CAS  PubMed  Google Scholar 

  19. Suzuki M. In vitro fertilization in Japan—early days of in vitro fertilization and embryo transfer and future prospects for assisted reproductive technology. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(5):184–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas K, Thomson A, Wood S, Kingsland C, Vince G, Lewis-Jones I. Endometrial integrin expression in women undergoing in vitro fertilization and the association with subsequent treatment outcome. Fertil Steril. 2003;80(3):502–507.

    PubMed  Google Scholar 

  21. Committee for Assisted Reproductive Technology KSoO, Gynecology; Choi YM, Chun SS, Han HD, Hwang JH, et al. Current status of assisted reproductive technology in Korea, 2009. Obstet Gynecol Sci. 2013;56(6):353–361.

    Google Scholar 

  22. Gracey E, Haroon N, Inman RD. Editorial: HLA-B27, cytokines, and spondylarthritis: noncanonical functions of acurious class I major histocompatibility complex gene. Arthritis Rheum. 2014;66(4):783–785.

    CAS  Google Scholar 

  23. Lerner SP, Finch CE. The major histocompatibility complex and reproductive functions. Endocr Rev. 1991;12(1):78–90.

    CAS  PubMed  Google Scholar 

  24. Haig D. Maternal–fetal interactions and MHC polymorphism. J Reprod Immunol. 1997;35(2):101–109.

    CAS  PubMed  Google Scholar 

  25. Sipak-Szmigiel O, Ronin-Walknowska E, Miklaszewicz A, Dolubeczko A, Zejmo M, Giedrys-Kalemba S. Association between HLA-DQA1, HLA-DQB1 alleles and risk of early pregnancy loss [in Polish]. Ginekol Pol. 2007;78(10):792–795.

    PubMed  Google Scholar 

  26. Paulesu L, Jantra S, Ietta F, Brizzi R, Bigliardi E. Interleukin-1 in reproductive strategies. Evol Dev. 2008;10:778–788.

    CAS  PubMed  Google Scholar 

  27. Simon C, Frances A, Piquette GN, et al. Embryonic implantation in mice is blocked by interleukin-1 receptor antagonist. Endocrinology. 1994;134(2):521–528.

    CAS  PubMed  Google Scholar 

  28. Strakova Z, Mavrogianis P, Meng X, et al. In vivo infusion of interleukin-1beta and chorionic gonadotropin induces endometrial changes that mimic early pregnancy events in the baboon. Endocrinology. 2005;146(9):4097–4104.

    CAS  PubMed  Google Scholar 

  29. LiZ, HangB, tianWZ. Changes of hCG andIL21b, IL26, TNF2a serum level in different phase of pregnancy. Acta Acad Med CPAF. 2008;17:864–868.

    Google Scholar 

  30. von Wolff M, Thaler CJ, Strowitzki T, Broome J, Stolz W, Tabibzadeh S. Regulated expression of cytokines in human endometrium throughout the menstrual cycle: dysregulation in habitual abortion. Mol Hum Reprod. 2000;6(7):627–634.

    Google Scholar 

  31. Tamura M, Sebastian S, Yang S, Gurates B, Fang Z, Bulun SE. Interleukin-1beta elevates cyclooxygenase-2 protein level and enzyme activity via increasing its mRNA stability in human endometrial stromal cells: an effect mediated by extracellularly regulated kinases 1 and 2. J Clin Endocrinol Metab. 2002;87(7):3263–3273.

    CAS  PubMed  Google Scholar 

  32. Gonzalez RR, Rueda BR, Ramos MP, Littell RD, Glasser S, Leavis PC. Leptin-induced increase in leukemia inhibitory factor and its receptor by human endometrium is partially mediated by interleukin 1 receptor signaling. Endocrinology. 2004;145(8):3850–3857.

    CAS  PubMed  Google Scholar 

  33. Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update. 2005;11(6):613–630.

    CAS  PubMed  Google Scholar 

  34. Bakacak M, Avci F, Ercan O, et al. The effect of maternal hemoglobin concentration on fetal birth weight according to trimesters [published online November 11, 2014]. J Matern Fetal Neonatal Med. 2014:1–5.

  35. Hamalainen H, Hakkarainen K, Heinonen S. Anaemia in the first but not in the second or third trimester is a risk factor for low birth weight. Clin Nutr (Edinburgh, Scotland). 2003;22(3):271–275.

    Google Scholar 

  36. Jwa SC, Fujiwara T, Yamanobe Y, Kozuka K, Sago H. Changes in maternal hemoglobin during pregnancy and birth outcomes. BMC Pregnancy Childbirth. 2015;15:80.

    PubMed  PubMed Central  Google Scholar 

  37. Abeysena C, Jayawardana P, de ASR. Maternal haemoglobin level at booking visit and its effect on adverse pregnancy outcome. Aust N Z J Obstet Gynaecol. 2010;50(5):423–427.

    PubMed  Google Scholar 

  38. Perry IJ, Beevers DG, Whincup PH, Bareford D. Predictors of ratio of placental weight to fetal weight in multiethnic community. BMJ. 1995;310(6977):436–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Whittaker PG, Macphail S, Lind T. Serial hematologic changes and pregnancy outcome. Obstet Gynecol. 1996;88(1):33–39.

    CAS  PubMed  Google Scholar 

  40. Hays PM, Cruikshank DP, Dunn LJ. Plasma volume determination in normal and preeclamptic pregnancies. Am J Obstet Gynecol. 1985;151(7):958–966.

    CAS  PubMed  Google Scholar 

  41. Pan H, Deng Y, Pollard JW. Progesterone blocks estrogeninduced DNA synthesis through the inhibition of replication licensing. Proc Natl Acad Sci USA. 2006;103(38):14021–14026.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenhong Wang MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Yu, C., Wu, R. et al. RNA-Seq-Based Transcriptome Analysis of Changes in Gene Expression Linked to Human Pregnancy Outcome After In Vitro Fertilization—Embryo Transfer. Reprod. Sci. 23, 134–145 (2016). https://doi.org/10.1177/1933719115597766

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115597766

Keywords

Navigation