Log in

The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We investigate the impact of genetic variants on transiently upregulated gestational insulin signaling. We recruited 1152 unrelated nondiabetic pregnant Han Chinese women (age 28.5 ± 4.1 years; body mass index [BMI] 21.4 ± 2.6 kg/m2) and gave them oral glucose tolerance tests. Matsuda index of insulin sensitivity, homeostatic model assessment of insulin resistance, indices of insulin disposition, early-phase insulin release, fasting state, and 0 to 120 minute’s proinsulin to insulin conversion were used to dissect insulin physiological characterization. Several variants related to β-cell function were genotyped. The genetic impacts were analyzed using logistic regression under an additive model. By adjusting for maternal age, BMI, and the related interactions, the genetic variants in ABCC8, CDKAL1, CDKN2A, HNF1B, KCNJ11, and MTNR1B were detected to impact gestational insulin signaling through heterogeneous mechanisms; however, compared with that in nonpregnant metabolism, the genetic effects seem to be eminently and heavily influenced by maternal age and BMI, indicating possible particular mechanisms underlying gestational metabolism and diabetic pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Assche FA, Aerts L, De Prins F. A morphological study of the endocrine pancreas in human pregnancy. Br J Obstet Gynaecol. 1978;5(11):818–820.

    Article  Google Scholar 

  2. Rieck S, Kaestner KH. Expansion of beta-cell mass in response to pregnancy. Trends Endocrinol Metab. 2010;1(3):151–158.

    Article  CAS  Google Scholar 

  3. Watanabe RM. Inherited destiny? Genetics and gestational diabetes mellitus. Genome Med. 2011;3(3):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang C, Bao W, Rong Y, et al. Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update. 2013;19(4):376–390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kwak SH, Kim SH, Cho YM, et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes. 2012;61(2):531–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mao H, Li Q, Gao S. Meta-analysis of the relationship between common type 2 diabetes risk gene variants with gestational diabetes mellitus. PLoS One. 2012;7(9):e45882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marullo L, El-Sayed Moustafa JS, Prokopenko I. Insights into the genetic susceptibility to type 2 diabetes from genome-wide association studies of glycaemic traits. Curr Diab Rep. 2014;14(11):551.

    Article  PubMed  CAS  Google Scholar 

  8. Dimas AS, Lagou V, Barker A, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63(6):2158–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Nie M, Li W, et al. Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PLoS One. 2011;6(11):e26953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liao S, Liu Y, Tan Y, et al. Association of genetic variants of melatonin receptor 1B with gestational plasma glucose level and risk of glucose intolerance in pregnant Chinese women. PLoS One. 2012;7(7):e40113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bennet K, James C, Hussain K. Pancreatic beta-cell K (ATP) channels: hypoglycaemia and hyperglycaemia. Rev Endocr Metab Disord. 2010;11(3):157–163.

    Article  CAS  Google Scholar 

  12. Brambillasca S, Altkrueger A, Colombo SF, et al. CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a tail-anchored protein in the endoplasmic reticulum (ER) of insulinoma cells. J Biol Chem. 2012;287(50):41808–4119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kushner JA. The role of aging upon β cell turnover. J Clin Invest. 2013;123(3):990–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rane SG, Dubus P, Mettus RV, et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet. 1999;22(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Coffinier C, Thomas MK, et al. Selective deletion of the Hnf1beta (MODY5) gene in beta-cells leads to altered gene expression and defective insulin release. Endocrinology. 2004; 145(8):3941–3949.

    Article  CAS  PubMed  Google Scholar 

  16. Kornfeld JW, Baitzel C, Ko¨nner AC, et al. Obesity-induced over-expression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013;494(7435):111–115.

    Article  CAS  PubMed  Google Scholar 

  17. Bonnefond A, Clément N, Fawcett K, et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet. 2012;44(3):297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meigs JB, Manning AK, Fox CS, et al. Genome-wide association with diabetes-related traits in the Framingham Heart Study. BMC Med Genet. 2007;19(8 Suppl 1):S16.

    Article  CAS  Google Scholar 

  19. Chauhan G, Spurgeon CJ, Tabassum R, et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes. 2010;59(8):2068–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Groenewoud MJ, Dekker JM, Fritsche A, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia. 2008;51(9):1659–1663.

    Article  CAS  PubMed  Google Scholar 

  21. Kirchhoff K, Machicao F, Haupt A, et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia. 2008;51(4): 597–601.

    Article  CAS  PubMed  Google Scholar 

  22. Stancáková A, Kuulasmaa T, Paananen J, et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes. 2009;58(9): 2129–2136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Grarup N, Rose CS, Andersson EA, et al. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes. 2007;56(12):3105–3111.

    Article  CAS  PubMed  Google Scholar 

  24. Lyssenko V, Nagorny CL, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41(1):82–88.

    Article  CAS  PubMed  Google Scholar 

  25. Langenberg C, Pascoe L, Mari A, et al. Common genetic variation in the melatonin receptor 1B gene (MTNR1B) is associated with decreased early-phase insulin response. Diabetologia. 2009; 52(8):1537–1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sparsø T, Bonnefond A, Andersson E, et al. G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucosestimulated insulin release: studies involving 19,605 Europeans. Diabetes. 2009;58(6):1450–1456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. American Diabetes Association. Gestational diabetes mellitus. Diabetes Care. 2003;26(suppl 1):S103–S105.

    Article  Google Scholar 

  28. Wang F, Han XY, Ren Q, et al. Effect of genetic variants in KCNJ11, ABCC8, PPARG and HNF4A loci on the susceptibility of type 2 diabetes in Chinese Han population. Chin Med J (Engl). 2009;122(20):2477–2482.

    CAS  Google Scholar 

  29. Qiu L, Na R, Xu R, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PLoS One. 2014;9(4):e93961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lu F, Qian Y, Li H, et al. Genetic variants on chromosome 6p21.1 and 6p22.3 are associated with type 2 diabetes risk: a case-control study in Han Chinese. J Hum Genet. 2012;57(5):320–325.

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Li H, Loos RJ, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008;57(10):2834–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wen J, Ro¨nn T, Olsson A, et al. Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One. 2010;5(2):e9153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang X, Qiao H, Zhao Y, et al. Association of single nucleotide polymorphisms in TCF2 with type 2 diabetes susceptibility in a Han Chinese population. PLoS One. 2012;7(12):e52938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang C, Hu C, Zhang R, et al. Common variants of hepatocyte nuclear factor 1beta are associated with type 2 diabetes in a Chinese population. Diabetes. 2009;58(4):1023–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ro¨nn T, Wen J, Yang Z, et al. A common variant in MTNR1B, encoding melatonin receptor 1B, is associated with type 2 diabetes and fasting plasma glucose in Han Chinese individuals. Diabetologia. 2009;52(5):830–833.

    Article  CAS  Google Scholar 

  36. Tam CH, Ho JS, Wang Y, et al. Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS One. 2010;5(7):e11428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cho YM, Kim TH, Lim S, et al. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia. 2009;52(2):253–261.

    Article  CAS  PubMed  Google Scholar 

  38. DeFronzo RA, Matsuda M. Reduced time points to calculate the composite index (letter). Diabetes Care. 2010;33(7):e93.

    Article  PubMed  Google Scholar 

  39. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419.

    Article  CAS  PubMed  Google Scholar 

  40. Meyre D, Pare G. Genetic dissection of diabetes: facing the giant. Diabetes. 2013;62(10):3338–3340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jonsson A, Ladenvall C, Ahluwalia TS, et al. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on α- and β-cell function and insulin action in humans. Diabetes. 2013;2(8):2978–283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shunyao Liao PhD or Shao** Deng MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, S., Liu, Y., Chen, X. et al. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women. Reprod. Sci. 22, 1421–1428 (2015). https://doi.org/10.1177/1933719115580995

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115580995

Keywords

Navigation