Log in

Regulation of bone lysis in inflammatory diseases

  • Published:
InflammoPharmacology Aims and scope Submit manuscript

Abstract

Focal bone erosion is a major pathological feature of several common inflammatory diseases. Over the past decade there have been major advances in our understanding of the factors that regulate osteoclast formation and activity. It is now apparent that receptor activator for NFκB (RANK), its ligand RANKL (also known as TRANCE, osteoclast differentiation factor and osteoprotegerin (OPG) ligand) and the RANKL inhibitor OPG, are the major factors regulating osteoclast formation. These molecules influence normal bone physiology and now there is growing evidence that RANK-RANKL interactions also regulate osteoclast formation in disease. This paper reviews recent findings showing expression of RANK, RANKL and OPG in inflammatory diseases including rheumatoid arthritis, periodontal disease and peri-implant loosening. It is emerging that OPG and RANKL are key molecules regulating bone loss in disease and therapeutic intervention that targets these molecules may be helpful in treating a wide range of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Al-Saffar, N. and Revell, A. (1994). Interleukin-1 production by activated macrophages surrounding loosened orthopaedic implants: A potential role in osteolysis, Br. J. Rheumatol. 33, 309–316.

    PubMed  Google Scholar 

  • Arend, W. P. and Dayer, J.-M. (1995). Inhibition of the production and effects of interleukin-1 and tumor necrosis factor-α in rheumatoid arthritis, Arthritis Rheum. 38, 151–160.

    PubMed  Google Scholar 

  • Assuma, R., Oates, T., Cochran, D., et al. (1998). IL-1 and TNF antagonists inhibit the inflammation response and bone loss in experimental periodontitis, J. Immununol. 160, 403–409.

    Google Scholar 

  • Brandstrom, H., Jonsson, K., Vidal, O., et al. (1998). Tumor necrosis factor-α and-β upregulate the levels of osteoprotegerin mRNA in human osteosarcoma MG-63 cells, Biochem. Biophys. Res. Commun. 248, 454–457.

    PubMed  Google Scholar 

  • Bucay, N., Sarosi, I., Dunstan, C. R., et al. (1998). Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification, Genes Dev. 12, 1260–1268.

    PubMed  Google Scholar 

  • Chu, C. Q., Field, M., Feldman, M., et al. (1991). Localization of tumor necrosis factor a in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis, Arthritis Rheum. 34, 1125–1132.

    PubMed  Google Scholar 

  • Col lin-Osdoby, P., Rothe, L., Anderson, F., et al. (2001). Receptor activator of NF-κB and osteoprote-gerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis, J. Biol. Chem. 276, 20659–20672.

    PubMed  Google Scholar 

  • Crotti, T. N., Smith, M. D., Hirsch, R. S., et al. (2003). Receptor activator NF-κ B ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis, J. Periodontol. Res. 38, 380–387.

    Google Scholar 

  • Crotti, T. N., Smith, M. D., Weedon, H., et al. (2002). Receptor activator NF-kappaB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis, Ann. Rheum. Dis. 61, 1047–1054.

    PubMed  Google Scholar 

  • Fujikawa, Y., Quinn, J. M. W., Sabokbar, A., et al. (1996a). The human osteoclast precursor circulates in the monocyte fraction, Endocrinology 137, 4058–4060.

    PubMed  Google Scholar 

  • Fujikawa, Y., Sabokbar, A., Neale, S. D., et al. (1996b). Human osteoclast formation and bone resorption by monoytes and synovial macrophages in rheumatoid arthritis, Ann. Rheum. Dis. 55, 816–822.

    PubMed  Google Scholar 

  • Fujikawa, Y., Shingu, M., Torisu, T., et al. (1996c). Bone resorption by tartrate-resistant acid phosphatase-positivemultinuclear cells isolated fromrheumatoidsynovium, Br. J. Rheumatol. 192, 97–104.

    Google Scholar 

  • Geivelis, M., Turner, D. W., Pederson, E. D., et al. (1993). Measurements of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease, J. Periodontol. 64, 980–983.

    PubMed  Google Scholar 

  • Goldring, S. R. and Gravallese, E. M. (2002). Pathogenesis of bone lesions in rheumaotid arthritis, Curr. Rheum. Rep. 4, 226–231.

    Google Scholar 

  • Gough, A., Sambrook, P., Devlin, J., et al. (1998). Osteoclastic activation is the principal mechanism leading to secondary osteoporosis in rheumatoid arthritis, J. Rheumatol. 25, 1282–1289.

    PubMed  Google Scholar 

  • Gravallese, E. M., Harada, Y., Wang, J.-T., et al. (1998). Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis, Am. J. Pathol. 152, 943–951.

    PubMed  Google Scholar 

  • Haynes, D. R., Atkins, G. J., Loric, M., et al. (1999). Bidirectional signaling between stromal and hemopoietic cells regulates interleukin-1 expression during human osteoclast formation, Bone 25, 269–278.

    PubMed  Google Scholar 

  • Haynes, D. R., Barg, E., Crotti, T. N., et al. (2003a). Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls, Rheumatology 42, 123–134.

    PubMed  Google Scholar 

  • Haynes, D. R., Barg, E., Crotti, T. N., et al. (2003b). Osteoprotegerin (OPG) Expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies, osteoarthritis and normal controls, Rheumatology 43, 1–12.

    Google Scholar 

  • Haynes, D. R., Crotti, T. N., Loric, M., et al. (2001a). Osteoprotegerinand receptor activator of nuclear factor kappa B ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint, J. Rheumatol. 40, 623–630.

    Google Scholar 

  • Haynes, D. R., Crotti, T. N., Potter, A. E., et al. (2001b). The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis, J. Bone Joint Surg. 83B, 902–911.

    Google Scholar 

  • Haynes, D. R., Hay, S. J., Rogers, S. D., et al. (1997). Regulation of bone cells by particle-activated mononuclear phagocytes, J. Bone Joint Surg. 79B, 988–994.

    Google Scholar 

  • Hofbauer, L. C., Lacey, D. L., Dunstan, C. R., et al. (1999). Interleukin-1β and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells, Bone 25, 255–259.

    PubMed  Google Scholar 

  • Horwood, N. J., Elliot, J., Martin, T. J., et al. (1998). Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells, Endocrinology 139, 4743–4746.

    PubMed  Google Scholar 

  • Itonaga, I., Sabokbar, A., Murray, D. W., et al. (2000a). Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthroplasty membrane derived macrophages, Ann. Rheum. Dis. 59, 26–31.

    PubMed  Google Scholar 

  • Itonaga, Y., Fujikawa, Y., Sabokbar, A., et al. (2000b). Rheumatoid arthritis synovial macrophage osteoclast differentiationis osteoprotegerin ligand-dependent, J. Pathol. 192, 97–104.

    PubMed  Google Scholar 

  • Johnsson, R., Franzen, H. and Nilsson, L. T. (1994). Combined survivorshipand multivariate analysis of revisions in 799 hip prostheses: a 10-to 20-year review of mechanical loosening, J. Bone Joint Surg. 76B, 439–443.

    Google Scholar 

  • Kobayashi, K., Takahashi, N., Jimi, E., et al. (2000). Tumor necrosis factor α stimulates osteoclast differentiationby a mechanism independent of the ODF/ RANKL-RANK interaction, J. Exp. Med. 191, 275–285.

    PubMed  Google Scholar 

  • Kodama, H., Nose, M., Niida, S., et al. (1991). Essential role of macrophage colony-stimultingfactor in the osteoclast differentiationsupported by stromal cells, J. Exp. Med. 173, 1291–1294.

    PubMed  Google Scholar 

  • Kong, Y.-Y., Feige, U., Sarosi, I., et al. (1999a). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand, Nature 402, 304–309.

    PubMed  Google Scholar 

  • Kong, Y.-Y., Yoshida, H., Sarosi, I., et al. (1999b). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis, Nature 397, 315–323.

    PubMed  Google Scholar 

  • Kotake, S., Sato, K., Kim, K. J., et al. (1996). Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-likecell formation, J. Bone Miner. Res. 11, 88–95.

    PubMed  Google Scholar 

  • Lacey, D. L., Timms, E., Tan, H.-L., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiationand activation, Cell 93, 165–176.

    PubMed  Google Scholar 

  • Lam, J., Takeshita, S., Barker, J. E., et al. (2000). TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand, J. Clin. Invest. 106, 1481–1488.

    PubMed  Google Scholar 

  • Liu, D., Xu, J.K., Figliomeni, L., et al. (2003). Expression of RANKL and OPG in mRNA in periodontal disease: possible involvement in bone destruction, Int. J. Mol. Med. 11, 17–21.

    PubMed  Google Scholar 

  • Martin, T. J. and Ng, K. W. (1994). Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity, J. Cell Biochem. 56, 357–366.

    PubMed  Google Scholar 

  • Merkel, K. D., Erdmann, J. M., Mchugh, K. P., et al. (1999). Tumor necrosis factor-α mediates orthopedic implant osteolysis, Am. J. Pathol. 154, 203–210.

    PubMed  Google Scholar 

  • Mizuno, A., Amizuka, N., Irie, K., et al. (1998). Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/ osteoprotegerin, Biochem. Biophys. Res. Commun. 247, 610–615.

    PubMed  Google Scholar 

  • Nakashima, T., Kobayashi, Y., Yamasaki, S., et al. (2000). Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines, Biochem. Biophys. Res. Commun. 275, 768–775.

    PubMed  Google Scholar 

  • Nakashima, T. Wada, T. and Penninger, J. M. (2003). RANKL and RANK as novel therapeutic targets for arthritis, Curr. Opin. Rheumatol. 15, 280–287.

    PubMed  Google Scholar 

  • Neale, S., Sabokbar, A., Howie, D. W., et al. (1999). Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption, J. Orthoped. Res. 17, 686–694.

    Google Scholar 

  • Quinn, J. M. W., Neale, S. D., Fujikawa, Y., et al. (1998). Human osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells, Calcif. Tissue Int. 62, 527–531.

    PubMed  Google Scholar 

  • Rodan, G. A. and Martin, T. J. (1982). Role of osteoblasts in hormonal control of bone resorption -- a hypothesis, Calcif. Tissue Int. 34, 311.

    PubMed  Google Scholar 

  • Romas, E., Bakharevski, O., Hards, D. K., et al. (2000). Expression of osteoclast differentiationfactor at sites of bone resorption in collagen-inducedarthritis, Arthritis Rheum. 43, 821–826.

    PubMed  Google Scholar 

  • Sabokbar, A., Fujukawa, Y., Neale, S., et al. (1997). Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells, Ann. Rheum. Dis. 56, 414–420.

    PubMed  Google Scholar 

  • Sabokbar, A., Kudo, O. and Athanasou, N. A. (2003). Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis, J. Orthoped. Res. 21, 73–80.

    Google Scholar 

  • Schwartz, Z., Goultschin, J., Dean, D. D., et al. (2000). Mechanisms of alveolar bone destruction in periodontitis, Periodontology 14, 158–172.

    Google Scholar 

  • Suda, T., Udagawa, N., Nakamura, I., et al. (1995). Modulation of osteoclast differentiation by local factors, Bone 17, 87S–91S.

    PubMed  Google Scholar 

  • Suzuki, Y., Tsutsumi, Y., Nakagawa, M., et al. (2001). Osteoclast-like cells in an in vitro model of bone destruction by rheumatoid synovium, Rheumatology 40, 673–682.

    PubMed  Google Scholar 

  • Takahashi, N., Akatsu, T., Udagawa, N., et al. (1988). Osteoblastic cells are involved in osteoclast formation, Endocrinology 123, 2600–2602.

    PubMed  Google Scholar 

  • Takayanagi, H., Kim, S., Matsuo, K., et al. (2002). RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta, Nature 416, 744–749.

    PubMed  Google Scholar 

  • Tsurakai, T., Takahashi, N., Jimi, E., et al. (1998). Isolation and characterization of osteoclast precursors that differentiate into osteoclasts on calvarial cells within a short period of time, J. Cell Physiol. 177, 26–35.

    PubMed  Google Scholar 

  • Udagawa, N., Takahashi, N., Akatsu, T., et al. (1990). Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells, Proc. Natl. Acad. Sci. USA 87, 7260–7264.

    PubMed  Google Scholar 

  • Xu, J. W., Konttinen, Y. T., Lassus, J., et al. (1996). Tumour necrosis factor-alpha (TNF-alpha) in loosening of total hip replacement (THR), Clin. Exp. Rheumatol 14, 643–648.

    PubMed  Google Scholar 

  • Xu, J. W., Li, T.-F., Partsch, G., et al. (1998). Interleukin-11 (IL-11) in aseptic loosening of total hip replacement (THR), Scand. J. Rheumatol. 27, 363–367.

    PubMed  Google Scholar 

  • Yamazaki, K., Nakajima, T., Gemmell, E., et al. (1994). IL-4 and IL-6-producing cells in human periodontal disease tissue, J. Oral Pathol. Med. 23, 347–353.

    PubMed  Google Scholar 

  • Yasuda, H., Shima, N., Nakagawa, N., et al. (1998a). Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/ OCIF inhibits osteoclastogenesis in vitro, Endocrinology 139, 1329–1337.

    PubMed  Google Scholar 

  • Yasuda, H., Shima, N., Nakagawa, N., et al. (1998b). Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclast inhibitory factor and is identical to TRANCE/ RANKL, Proc. Natl. Acad. Sci. USA 95, 3597–3602.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, D.R., Crotti, T.N. Regulation of bone lysis in inflammatory diseases. Inflammopharmacology 11, 323–331 (2003). https://doi.org/10.1163/156856003322699500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856003322699500

Navigation