Log in

Non-fragile tracking controller design for fractional order systems against active disturbance rejection

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this work, a new non-fragile based tracking controller design for fractional order systems with non-linear uncertainty, unidentified external disturbances, and time-delay is investigated. A novel structure of a fractional order non-fragile repetitive controller is suggested to obtain the tracking performance for the addressed system. In particular, gain fluctuations are used with an improved two-degrees-of-freedom Smith predictor in the construction of this structure. Using the Lyapunov–Krasovskii stability theory and a continuous amplitude distributed equivalent system, a new set of criteria to determine the asymptotic stability of the associated closed-loop system is proposed in the context of linear matrix inequalities. Within a single framework, disturbance estimation, asymptotic tracking, and time delay compensation are all done using the obtained stability results. The resulting theoretical results are finally confirmed by numerical examples that demonstrate how the specified constraints could lead the system output to precisely match any defined reference signal by balancing for the unidentified exterior disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability statement

No data associated in the manuscript.

References

  1. P. Anbalagan, E. Hincal, R. Ramachandran, D. Baleanu, J. Cao, M. Niezabitowski, A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Math. 6, 4526–4555 (2021)

    Article  MathSciNet  Google Scholar 

  2. M. Arjunan, T. Abdelijawad, P. Anbalagan, Impulsive effects on fractional order time delayed gene regulatory networks: asymptotic stability analysis. Chaos Solitons Fractals 154, 111634 (2022)

    Article  MathSciNet  Google Scholar 

  3. S.A. Samy, P. Anbalagan, Disturbance observer-based integral sliding-mode control design for leader-following consensus of multi-agent systems and its application to car-following model. Chaos Solitons Fractals 174, 113733 (2023)

    Article  MathSciNet  Google Scholar 

  4. A.M.S. Mahdy, Kh. Lotfy, A.A. El-Bary, Use of optimal control in studying the dynamical behaviors of fractional financial awareness models. Soft. Comput. 26, 3401–3409 (2022)

    Article  Google Scholar 

  5. W. Chen, H. Dai, Y. Song, Z. Zhang, Convex Lyapunov functions for stability analysis of fractional order systems. IET Control Theory Appl. 7, 1070–1074 (2017)

    Article  MathSciNet  Google Scholar 

  6. I. N’Doye, K.N. Salama, T.M. Laleg-Kirati, Robust fractional order proportional-integral observer for synchronization of chaotic fractional-order systems. IEEE/CAA J. Autom. Sinica 62(1), 268–277 (2018)

    MathSciNet  Google Scholar 

  7. X. Huang, Z. Wang, Y. Li, J. Lu, Application to time-delay systems, design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems. J. Franklin Inst. 351, 5480–5493 (2014)

    Article  MathSciNet  Google Scholar 

  8. Y. Li, J. Li, Stability analysis of fractional order systems based on T–S fuzzy model with the fractional order \(\alpha : 0 < \alpha < 1\). Nonlinear Dyn. 78, 2909–2919 (2014)

  9. Y. Zhao, L. Wang, Practical exponential stability of impulsive stochastic food chain system with time-varying delays. Mathematics 11(1), 147 (2023). https://doi.org/10.3390/math11010147

    Article  Google Scholar 

  10. R. Rao, Z. Lin, X. Ai, J. Wu, Synchronization of epidemic systems with Neumann boundary value under delayed impulse. Mathematics 10(12), 2064 (2022). https://doi.org/10.3390/math10122064

    Article  Google Scholar 

  11. Y.H. Lan, Y. Zhou, Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Syst. Control Lett. 62, 1143–1150 (2013)

    Article  MathSciNet  Google Scholar 

  12. A. Alsaedi, B. Ahmad, M. Kirane, B. Rebiai, Local and blowing-up solutions for a space-time fractional evolution system with nonlinearities of exponential growth. Math. Methods Appl. Sci. 42, 4378–4393 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Yaseen, M. Abbas, B. Ahmad, Numerical simulation of the nonlinear generalized time-fractional Klein–Gordon equation using cubic trigonometric B-spline functions. Math. Methods Appl. Sci. 44, 901–916 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. O. Ragb, A.M. Wazwaz, M. Mohamed, M.S. Matbuly, M. Salah, Fractional differential quadrature techniques for fractional-order Cauchy reaction–diffusion equations. Math. Methods Appl. Sci. 46, 10216–10233 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  15. A.M.S. Mahdy, A numerical method for solving the nonlinear equations of Emden-Fowler models. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.019

    Article  Google Scholar 

  16. A.M.S. Mahdy, Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo-Fabrizio derivative. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9038

    Article  Google Scholar 

  17. M.J. Park, O.M. Kwon, Stability and stabilization of discrete-time T–S fuzzy systems with time-varying delay via Cauchy–Schwartz-based summation inequality. IEEE Trans. Fuzzy Syst. 25, 128–140 (2017)

    Article  Google Scholar 

  18. O.M. Kwon, M.J. Park, S.M. Lee, Ju.H. Park, Augmented Lyapunov–Krasovskii functional approaches to robust stability criteria for uncertain Takagi–Sugeno fuzzy systems with time-varying delays. Fuzzy Sets Syst. 201, 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  19. O.M. Kwon, M.J. Park, Ju.H. Park, S.M. Lee, Stability and stabilization of TS fuzzy systems with time-varying delays via augmented Lyapunov–Krasovskii functionals. Inform. Sc. 372, 1–15 (2016)

    Article  MathSciNet  Google Scholar 

  20. X. Li, H.K. Lam, F. Liu, X. Zhao, Stability and stabilization analysis of positive polynomial fuzzy systems with time delay considering piecewise membership functions. IEEE Trans. Fuzzy Syst. 25, 958–971 (2017)

    Article  Google Scholar 

  21. W. Liu, C.C. Lim, P. Shi, S. Xu, Sampled-data fuzzy control for a class of nonlinear systems with missing data and disturbances. Fuzzy Sets Syst. 306, 63–86 (2017)

    Article  MathSciNet  Google Scholar 

  22. O.J. Smith, A controller to overcome dead time. ISA Trans. 6, 28–33 (1959)

    Google Scholar 

  23. K.J. Astrom, C.C. Hang, B.C. Lim, A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans. Autom. 39(2), 343–345 (1994)

    Article  MathSciNet  Google Scholar 

  24. F. Gao, M. Wu, J. She, Y. He, Delay-dependent guaranteed-cost control based on combination of Smith predictor and equivalent-input-disturbance approach. ISA Trans. 62, 215–221 (2016)

    Article  Google Scholar 

  25. M. Wu, J. Cheng, C. Lu, L. Chen, X. Chen, W. Cao, X. Lai, Disturbance estimator and smith predictor-based active rejection of stick-slip vibrations in drill string systems. Int. J. Syst. Sci. 51(5), 826–838 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. W. Zhang, Y. Sun, X. Xu, Two degree-of-freedom Smith predictor for processes with time delay. Automatica 34(10), 1279–1282 (1998)

    Article  Google Scholar 

  27. B. Hredzak, V.G. Agelidis, M. Jang, A model predictive control system for a hybrid battery-ultracapacitor power source. IEEE Trans. Power Electron. 29(3), 1469–1479 (2014)

    Article  ADS  Google Scholar 

  28. X. Jiang, Z.J. Wu, H.R. Karimi, Disturbance observer-based disturbance attenuation control for a class of stochastic systems. Automatica 63, 21–25 (2016)

    Article  MathSciNet  Google Scholar 

  29. L. Ouyang, M. Wu, J. She, Estimation of and compensation for unknown input nonlinearities using equivalent-input-disturbance approach. Nonlinear Dyn. 88, 2161–2170 (2017)

    Article  Google Scholar 

  30. Maopeng Ran, Juncheng Li, Lihua **e, A new extended state observer for uncertain nonlinear systems. Automatica 131, 109772 (2021)

    Article  MathSciNet  Google Scholar 

  31. K. DavidYoung, Vadim I. Utkin, Umit Ozguner, A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7(3), 328–342 (1999)

    Article  Google Scholar 

  32. Y. Tang, X. **ng, H.R. Karimi, L. Kocarev, J. Kurths, Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems. IEEE Trans. Ind. Electron. 63(2), 1299–1307 (2016)

    Article  Google Scholar 

  33. H. Wang, P. Shi, H. Li, Q. Zhou, Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Trans. Cybern. 47(10), 3075–3087 (2017)

    Article  Google Scholar 

  34. P. Cui, Q. Wang, G. Zhang, Q. Cao, Hybrid fractional repetitive control for magnetically suspended rotor systems. IEEE Trans. Ind. Electron. 65, 3491–3498 (2018)

    Article  Google Scholar 

  35. L. He, K. Zhang, J. **ong, S. Fan, A repetitive control scheme for harmonic suppression of circulating current in modular multilevel converters. IEEE Trans. Power Electron. 30, 471–481 (2015)

    Article  ADS  Google Scholar 

  36. C.X. Li, G.Y. Gu, M.J. Yang, L.M. Zhu, High-speed tracking of a nanopositioning stage using modified repetitive control. IEEE Trans. Autom. Sci. Eng. 14, 1467–1477 (2017)

    Article  Google Scholar 

  37. L. Zhou, J. She, M. Wu, A one-step method of designing and observer-based modified repetitive-control system. Int. J. Syst. Sci. 46, 2617–2627 (2015)

    Article  MathSciNet  Google Scholar 

  38. R. Sakthivel, T. Saravanakumar, B. Kaviarasan, S. Marshal Anthoni, Dissipativity based repetitive control for switched stochastic dynamical systems. Appl. Math. Comput. 291, 340–353 (2016)

    MathSciNet  Google Scholar 

  39. P. Yu, M. Wu, J. She, K.Z. Liu, Y. Nakanishi, An improved equivalent-input-disturbance approach for repetitive control system with state delay and disturbance. IEEE Trans. Ind. Electron. 65, 521–531 (2017)

    Article  Google Scholar 

  40. H. Li, H. Liu, C. Hilton, S. Hand, Non-fragile \(H_\infty \) control for half-vehicle active suspension systems with actuator uncertainties. J. Vib. Control 19, 560–575 (2013)

    Article  Google Scholar 

  41. Y. Liu, B.Z. Guo, Ju.H. Park, Non-fragile \(H_\infty \) filtering for delayed Takagi–Sugeno fuzzy systems with randomly occurring gain variations. Fuzzy Sets Syst. 316, 99–116 (2017)

    Article  Google Scholar 

  42. Y. Zhang, Y. Shi, P. Shi, Robust and non-fragile finite-time \(H_\infty \) control for uncertain Markovian jump nonlinear systems. Appl. Math. Comput. 279, 125–138 (2016)

    MathSciNet  Google Scholar 

  43. Z. Zhang, H. Zhang, Z. Wang, Q. Shan, Non-fragile exponential \(H_\infty \) control for a class of nonlinear networked control systems with short time-varying delay via output feedback controller. IEEE Trans. Cybern. 47, 2008–2019 (2017)

    Google Scholar 

  44. T. Saravanakumar, Tae H. Lee, Hybrid-driven-based resilient control for networked T–S fuzzy systems with time-delay and cyber-attacks. Int. J. Robust Nonlinear Control 33, 7869–7891 (2023)

    Article  MathSciNet  Google Scholar 

  45. T. Saravanakumar, S. Marshal Anthoni, Q. Zhu, Resilient extended dissipative control for Markovian jump systems with partially known transition probabilities under actuator saturation. J. Frank. Inst. 357, 6197–6227 (2020)

    Article  MathSciNet  Google Scholar 

  46. T. Saravanakumar, V.J. Nirmala, R. Raja, J. Cao, G. Lu, Finite-time reliable dissipative control of neutral-type switched artificial neural networks with non-linear fault inputs and randomly occurring uncertainties. Asian J. Control 22, 2487–2499 (2020)

    Article  MathSciNet  Google Scholar 

  47. S. Harshavarthini, S.M. Lee, Truncated predictive tracking control design for semi-Markovian jump systems with time-varying input delays. Appl. Math. Comput. (2024). https://doi.org/10.1016/j.amc.2024.128686

    Article  MathSciNet  Google Scholar 

  48. R. Sakthivel, S. Harshavarthini, S. Mohanapriya, O. Kwon, Disturbance rejection based tracking control design for fuzzy switched systems with time-varying delays and disturbances. Int. J. Robust Nonlinear Control 33(2), 1184–1202 (2023)

    Article  MathSciNet  Google Scholar 

  49. W.K. Wong, Hongjie Li, S.Y.S. Leung, Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4877–4890 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  50. S.Y. Shao, M. Chen, Q.X. Wu, Stabilization control of continuous-time fractional positive systems based on disturbance observer. IEEE Access 4, 3054–3064 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arivumani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arivumani, S., Vadivel, P., Rajchakit, G. et al. Non-fragile tracking controller design for fractional order systems against active disturbance rejection. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01217-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01217-z

Navigation