Log in

Multistability and dynamical properties of quantum ion-acoustic flow

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Multistability and dynamical properties of ion-acoustic flow are studied in a quantum plasma containing positive beam ions, positive ions and electrons. A four dimensional conservative dynamical system has been proposed for the considered plasma system and is analyzed by considering effects of Mach number and quantum diffraction parameter. Coexistences of multiple chaotic trajectories, chaotic with quasiperiodic and multiperiodic trajectories and chaotic with quasi-periodic and periodic trajectories for ion-acoustic waves are established. The results are suitable for application in comprehending the beam-plasma interaction and studying dynamics of coexisting features in extreme astrophysical plasmas, such as, neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  2. Z. Rahim, M. Adnan, A. Qamar, A. Saha, Phys. Plasmas 25, 08706 (2018)

    Article  Google Scholar 

  3. A. Saha, B. Pradhan, S. Banerjee, Phys. Scr. 95, 055602 (2020)

    Article  ADS  Google Scholar 

  4. F.T. Arecchi, R. Meucci, G. Puccioni, J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982)

    Article  ADS  Google Scholar 

  5. H. Natiq, M.R.M. Said, M.R.K. Ariffin, S. He, L. Rondoni, S. Banerjee, Eur. Phys. J. Plus 133, 557 (2018)

    Article  Google Scholar 

  6. M. Wang, Y. Deng, X. Liao, Z. Li, M. Ma, Y. Zeng, Int. J. NonLinear Mech. 111, 149 (2019)

    Article  ADS  Google Scholar 

  7. M.F.A. Rahim, H. Natiq, N.A.A. Fataf, S. Banerjee, Eur. Phys. J. Plus 134, 499 (2019)

    Article  Google Scholar 

  8. S.J. Hahn, K.H. Pae, Phys. Plasmas 10, 314 (2003)

    Article  ADS  Google Scholar 

  9. J. Yong, W. Haida, Y. Changxuan, Chin. Phys. Lett. 5, 200 (1988)

    Google Scholar 

  10. B. Yan, P.K. Prasad, S. Mukherjee, A. Saha, S. Banerjee, Complexity 2020, 5428548 (2020)

    Google Scholar 

  11. P.K. Prasad, A. Gowrishankar, A. Saha, S. Banerjee, Phys. Scr. 95, 6 (2020)

    Google Scholar 

  12. A. Abdikian, J. Tamang, A. Saha, Commun. Theor. Phys. 72, 075502 (2020)

    Article  ADS  Google Scholar 

  13. B. Pradhan, A. Saha, H. Natiq, S. Banerjee, ZNA (2020). https://doi.org/10.1515/zna-2020-0224

    Article  Google Scholar 

  14. S.H. Strogatz, Nonlinear Dynamics and Chaos, 2nd edn. (Avalon Publishing, 2016)

  15. J. Fell, J. Roschke, P. Beckmann, Biol. Cybern. 69, 139 (1993)

    Article  Google Scholar 

  16. L.D. Iasemidis, J.C. Sackllares, H.P. Zaveri, W.J. Williams, Brain Topogr. 2, 187 (1990)

    Article  Google Scholar 

  17. A. Giovanni, M. Ouaknine, J.-M. Triglia, J. Voice 13, 341 (1999)

    Article  Google Scholar 

  18. C. Baohua, L. Jian**, D. Ruiqiang, Sci. China Ser. D Earth Sci. 49, 1111 (2006)

    Article  Google Scholar 

  19. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastono, Phys. D 16, 285 (1985)

    Article  MathSciNet  Google Scholar 

  20. V. De Witte, W. Govaerts, Yu.A. Kuznetsov, H.G.E. Meijer, Phys. D 269, 126 (2014)

  21. F. Haas, L.G. Garcia, J. Goedert, G. Manfredi, Phys. Plasmas 10, 3858 (2003)

  22. L. Wei, Y. Wang, Phys. Rev. B 75, 193407 (2007)

    Article  ADS  Google Scholar 

  23. A. Saha, B. Pradhan, S. Banerjee, Eur. J. Phys. 135, 216 (2020)

    Google Scholar 

  24. U.M. Abdelsalam, W.M. Moslem, P.K. Shukla, Phys. Lett. A 372, 4057 (2008)

    Article  ADS  Google Scholar 

  25. W. Masood, A.M. Mirza, M. Hanif, Phys. Plasmas 15, 072106 (2008)

  26. M.S. Zobaer, K.N. Mukta, L. Nahar, N. Roy, A.A. Mamun, IEEE Trans. Plasma Sci. 41, 1614 (2013)

    Article  ADS  Google Scholar 

  27. S.K. El-Labany, W.F. El-Taibany, A. Atteya, Phys. Lett. A 382, 412 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. P.K. Prasad, S. Sarkar, A. Saha, K.K. Mondal, Braz. J. Phys. 49, 698 (2019)

    Article  ADS  Google Scholar 

  29. I.S. Elkamash, F. Haas, I. Kourakis, Phys. Plasmas 24, 092119 (2017)

    Article  ADS  Google Scholar 

  30. I. Paul, A. Chatterjee, S.N. Paul, Laser Part. Beams 37, 1 (2019)

    Article  Google Scholar 

  31. U.K. Samanta, A. Saha, P. Chatterjee, Astrophys. Space Sci. 347, 293 (2013)

    Article  ADS  Google Scholar 

  32. B. Sahu, B. Pal, S. Poria, R. Roychoudhury, J. Plasma Phys. 81, 905810510 (2015)

    Article  Google Scholar 

  33. Zh.A. Moldabekov, M. Bonitz, T.S. Ramazanov, Contrib. Plasma Phys. 57, 499 (2017)

  34. Zh.A. Moldabekov, M. Bonitz, T.S. Ramazanov, Phys. Plasmas 25, 031903 (2018)

Download references

Acknowledgements

Barsha Pradhan is thankful to Sikkim Manipal University for providing TMA Pai Research Grant (Ref. Nos. 118/SMU/REG/UOO/104/2019) to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, B., Saha, A. & Natiq, H. Multistability and dynamical properties of quantum ion-acoustic flow. Eur. Phys. J. Spec. Top. 230, 1503–1515 (2021). https://doi.org/10.1140/epjs/s11734-021-00059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00059-3

Navigation