Log in

The integration of cerium oxide nanoparticles in solid-state random laser development

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study demonstrates that CeO2 nanoparticles are effective scattering centers within a solid-state random laser (RL) composed of a rhodamine 6G-doped polymeric matrix. Introducing these nanoparticles with nanorod geometry has enabled us to achieve distinct intensity thresholds for two different excitation spot sizes, underscoring the critical role of scattering centers in RL action. Furthermore, our findings reveal a linewidth narrowing from 32 to 8 nm, indicating the transition from spontaneous to stimulated emission. A comparative analysis employing two methodologies, direct analysis and spectral decomposition, yielded consistent results across the board. Each methodology confirmed the presence of an intensity threshold and linewidth narrowing exclusively in the CeO2-doped samples, confirming the absence of such phenomena in the undoped matrix. The synthesis of CeO2 nanostructures by hydrothermal route followed by incorporation into the dye-doped polymeric matrix emphasizes the cost-effectiveness and accessibility of our approach. This practical and scalable synthesis process, coupled with the novel application of CeO2 nanoparticles as scattering centers in solid-state RL systems, is a viable alternative to TiO2, the well-known and most-used scatterer centers in RL systems. Such findings contribute to the current field of RL research and open new possibilities for exploring novel CeO2 morphologies to optimize parameters, e.g., reducing the emission intensity threshold. Such reduction is particularly relevant for creating lab-on-chip devices that can be operated with compact and affordable light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability Statement

The authors declare that all data supporting the findings of this study are included within the paper and its supplementary information.

References

  1. D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4(5), 359–367 (2008)

    Article  Google Scholar 

  2. L.A. Silva et al., Exploring disordered light transport in scattering media to optimize random lasers. J. Phys. Chem. C 128, 5321 (2024)

    Article  Google Scholar 

  3. A.L. Burin, H. Cao, M.A. Ratner, Understanding and control of random lasing. Phys. B 338(1–4), 212–214 (2003)

    Article  ADS  Google Scholar 

  4. N. Padiyakkuth, R. Antoine, N. Kalarikkal, Random lasing in rhodamine 6G dye-Kaolinite nanoclay colloids under single shot nanosecond pum**. Opt. Mater. 129, 112408 (2022)

    Article  Google Scholar 

  5. A.S. Gomes et al., Recent advances and applications of random lasers and random fiber lasers. Prog. Quantum Electron. 78, 100343 (2021)

    Article  Google Scholar 

  6. C.-Y. Su et al., Multifunctional random-laser smart inks. ACS Appl. Mater. Interfaces 12(43), 49122–49129 (2020)

    Article  Google Scholar 

  7. X. Shi et al., Manipulating laser modes in diffusive disordered systems by precisely designing the boundary of the local pump. Laser Photonics Rev. 17(10), 2300188 (2023)

    Article  ADS  Google Scholar 

  8. X. Sun et al., 2D/3D heterostructure derived from phase transformation of 0D perovskite for random lasing applications with remarkably improved water resistance. Nanoscale 13(44), 18647–18656 (2021)

    Article  Google Scholar 

  9. L.M. Abegão et al., Measuring milk fat content by random laser emission. Sci. Rep. 6(1), 35119 (2016)

    Article  ADS  Google Scholar 

  10. S. dos Santos Araújo et al., Using a random laser to measure the content of protein in skim milk. Appl. Opt. 62(8), C53–C58 (2023)

    Article  Google Scholar 

  11. S.B. Aziz et al., Synthesis of PVA/CeO2 based nanocomposites with tuned refractive index and reduced absorption edge: structural and optical studies. Materials 14(6), 1570 (2021)

    Article  ADS  Google Scholar 

  12. M.N. Polyanskiy, Refractiveindex.info database of optical constants. Sci. Data. 11(1), 94 (2024)

    Article  Google Scholar 

  13. S. Marinho et al., Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B. Laser Phys. Lett. 12(5), 055801 (2015)

    Article  ADS  Google Scholar 

  14. L.M. Abegão et al., Random laser emission from a Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel. Laser Phys. Lett. 14(6), 065801 (2017)

    Article  ADS  Google Scholar 

  15. D.K. Koli, G. Agnihotri, R. Purohit, A review on properties, behaviour and processing methods for Al-nano Al2O3 composites. Procedia Mater. Sci. 6, 567–589 (2014)

    Article  Google Scholar 

  16. B. Shi et al., Preparation and properties of highly transparent SiO2 aerogels for thermal insulation. Gels 8(11), 744 (2022)

    Article  Google Scholar 

  17. D.S. Wiersma, A. Lagendijk, Light diffusion with gain and random lasers. Phys. Rev. E 54(4), 4256 (1996)

    Article  ADS  Google Scholar 

  18. P. Rajendran, A. Muthuraj, N.E. Rajagounder, Review on CeO2-based corrosion coatings. Trans. Indian Ceram. Soc. 81(4), 158–174 (2022)

    Article  Google Scholar 

  19. C.E. Castano, M.J. O’Keefe, W.G. Fahrenholtz, Cerium-based oxide coatings. Curr. Opin. Solid State Mater. Sci. 19(2), 69–76 (2015)

    Article  ADS  Google Scholar 

  20. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007)

    Article  Google Scholar 

  21. A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 38(4), 439–520 (1996)

    Article  Google Scholar 

  22. W. Huang, Y. Gao, Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals. Catal. Sci. Technol. 4(11), 3772–3784 (2014)

    Article  Google Scholar 

  23. M. Lipińska-Chwałek, F. Schulze-Küppers, J. Malzbender, Mechanical properties of pure and doped cerium oxide. J. Eur. Ceram. Soc. 35(5), 1539–1547 (2015)

    Article  Google Scholar 

  24. C.T. Campbell, C.H. Peden, Oxygen vacancies and catalysis on ceria surfaces. Science 309(5735), 713–714 (2005)

    Article  Google Scholar 

  25. X. Cao et al., Fabrication and application of CeO2 nanostructure with different morphologies: a review. J. Renew. Mater. 8(11), 1443–1472 (2020)

    Article  Google Scholar 

  26. C. Ho et al., Morphology-controllable synthesis of mesoporous CeO2 nano-and microstructures. Chem. Mater. 17(17), 4514–4522 (2005)

    Article  Google Scholar 

  27. J. Zhou et al., Progress in the development of polymeric and multifunctional photoinitiators. Prog. Polym. Sci. 99, 101165 (2019)

    Article  Google Scholar 

  28. G.G. Swift, C.E. Carraher Jr., C. Bowman, Polymer Modification (Springer Science & Business Media, 2013)

    Google Scholar 

  29. A.J. Otuka et al., Functionalized and microstructured polymeric composites used as gain medium in random lasers systems. in 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC), (IEEE, 2019)

  30. F.P. Schäfer, in Principles of dye laser operation. Dye lasers, (2005), pp. 1–89.

  31. I.D. Samuel, G.A. Turnbull, Polymer lasers: recent advances. Mater. Today 7(9), 28–35 (2004)

    Article  Google Scholar 

  32. H.-X. Mai et al., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 109(51), 24380–24385 (2005)

    Article  Google Scholar 

  33. G. van Soest, M. Tomita, A. Lagendijk, Amplifying volume in scattering media. Opt. Lett. 24(5), 306–308 (1999)

    Article  ADS  Google Scholar 

  34. M.C.A. de Oliveira et al., Dye-doped electrospun fibers for use as random laser generator: the influence of spot size and scatter concentration. Opt. Mater. 101, 109722 (2020)

    Article  Google Scholar 

  35. H. Li et al., Prediction of optical properties in particulate media using double optimization of dependent scattering and particle distribution. Nano Lett. 24(1), 287–294 (2023)

    Article  ADS  Google Scholar 

  36. D. Schuerman et al., Systematic studies of light scattering. 1: particle shape. Appl. Opt. 20(23), 4039–4050 (1981)

    Article  ADS  Google Scholar 

  37. E. Petrova, V. Tishkovets, Light scattering by morphologically complex objects and opposition effects (a review). Sol. Syst. Res. 45, 304–322 (2011)

    Article  ADS  Google Scholar 

  38. A. Brito-Silva et al., Random laser action in dye solutions containing Stöber silica nanoparticles. J. Appl. Phys. 108(3) (2010)

  39. A.S. Gomes et al., Lévy Statistics and Spin Glass Behavior in Random Lasers (CRC Press, 2023)

    Book  Google Scholar 

  40. A.S. Gomes et al., Glassy behavior in a one-dimensional continuous-wave erbium-doped random fiber laser. Phys. Rev. A 94(1), 011801 (2016)

    Article  ADS  Google Scholar 

  41. E. Ignesti et al., Experimental and theoretical investigation of statistical regimes in random laser emission. Phys. Rev. A 88(3), 033820 (2013)

    Article  ADS  Google Scholar 

  42. L.M. Massaro et al., Heterogeneous random laser with switching activity visualized by replica symmetry breaking maps. ACS Photonics 8(1), 376–383 (2021)

    Article  Google Scholar 

  43. N.U. Wetter et al. Production of a microfluidic random laser using ultrashort laser pulses. in 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC), (2019, IEEE)

  44. K. Jorge et al., Directional random laser source consisting of a HC-ARROW reservoir connected to channels for spectroscopic analysis in microfluidic devices. Appl. Opt. 55(20), 5393–5398 (2016)

    Article  ADS  Google Scholar 

  45. K. Hachem et al., Methods of chemical synthesis in the synthesis of nanomaterial and nanoparticles by the chemical deposition method: a review. BioNanoScience 12(3), 1032–1057 (2022)

    Article  Google Scholar 

  46. A. Nandagudi et al., Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications. Mater. Today Sustain. 19, 100214 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Laboratório Multiusuário de Microscopia de Alta Resolução (LabMic) at Universidade Federal de Goiás (UFG) for providing access to their scanning electron microscopy (SEM) facilities.

Funding

This research was funded by Brazilian Council for Scientific and Technological Development (CNPq) with the following grant numbers 311439/2021–7, 406190/2021–6 and 440225/2021–3 (L.M.G.A.) and funded by Air Force Office of Scientific Research (AFOSR/SOARD, USA) under award number FA9550-23–1-0575 (M.S.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. G. Abegão.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1535 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abegão, L.M.G., Silva, L.H.P., Cocca, L.H.Z. et al. The integration of cerium oxide nanoparticles in solid-state random laser development. Eur. Phys. J. Plus 139, 617 (2024). https://doi.org/10.1140/epjp/s13360-024-05433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05433-3

Navigation