Log in

Nonlinear dynamics of an asymmetric bistable energy harvester with an adjustable unilateral stopper

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Due to the broadband response and high sensitivity to low excitation levels, bistable energy harvesters (BEHs) have been viewed as an efficient method to overcome the shortcomings of linear energy harvesters only performing well near the resonant frequency. Previously, most strategies for performance enhancement of BEHs have been extensively discussed for systems with perfectly symmetric potentials. However, it is difficult to achieve a BEH with a perfectly symmetric potential due to practical constraints and previous investigations indicated that asymmetric potentials have a negative effect on the performance of BEH. Therefore, an adjustable unilateral stopper is introduced and positioned at the side with deeper potential well to broaden the response frequency band. Numerical simulations of bifurcation diagrams and maps of 0–1 test and output power indicate that the introduction of the stopper could enable the asymmetric BEH to realize interwell oscillation in a wider frequency range, and the performance are closely related to the collision gap, collision position, excitation frequency, as well as excitation levels. Regarding the basins of attraction, it is demonstrated that the stopper leads the system to achieve interwell oscillation with a high probability under certain excited conditions. Overall, this study provides a possible strategy for improving the performance of the asymmetric BEHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

Data will be made available on reasonable request.

References

  1. N.R. Kumar, A review of low-power VLSI technology developments, in Innovations in electronics and communication engineering. ed. by H.S. Saini, R.K. Singh, K.S. Reddy (Springer Singapore, Singapore, 2018), pp.17–27

    Chapter  Google Scholar 

  2. Z. Zhou, Y. Liu, M. You, R. **ong, X. Zhou, Green Energy Intell. Transp. 1, 100008 (2022)

    Article  Google Scholar 

  3. J. Wang, J. Zhou, W. Zhao, Green Energy Intell. Transp 1, 100028 (2022)

    Article  Google Scholar 

  4. J. Siang, M.H. Lim, M.S. Leong, Int. J. Energ. Res. 42, 1866 (2018)

    Article  Google Scholar 

  5. Z. Yang, S. Zhou, J.W. Zu, D.J. Inman, Joule 2, 642 (2018)

    Article  Google Scholar 

  6. D. Hao, L. Kong, Z. Zhang, W. Kong, A.M. Tairab, X. Luo et al., Sustain. Energy. Techn. 57, 103184 (2023)

    Google Scholar 

  7. H. Cao, L. Kong, M. Tang, Z. Zhang, X. Wu, L. Lu et al., Int. J. Mech. Sci. 243, 108018 (2023)

    Article  Google Scholar 

  8. B. Li, W. Wang, Z. Li, R. Wei, Energ. Comvers. Manage. 301, 118022 (2024)

    Article  Google Scholar 

  9. U. Khan, S.W. Kim, ACS Nano 10, 6429 (2016)

    Article  Google Scholar 

  10. B. Zhang, W. Li, J. Ge, C. Chen, X. Yu, Z.L. Wang et al., Nano Res. 16, 3149 (2022)

    Article  ADS  Google Scholar 

  11. H.-X. Zou, W.-M. Zhang, W.-B. Li, K.-X. Wei, Q.-H. Gao, Z.-K. Peng et al., Energ. Comvers. Manage. 148, 1391 (2017)

    Article  ADS  Google Scholar 

  12. B. Andò, S. Baglio, F. Maiorca, C. Trigona, Sensor. Actuat. A-Phys. 202, 176 (2013)

    Article  ADS  Google Scholar 

  13. E. Arroyo, A. Badel, F. Formosa, Y. Wu, J. Qiu, Sensor. Actuat. A-Phys. 183, 148 (2012)

    Article  ADS  Google Scholar 

  14. X.-Y. Jiang, H.-X. Zou, W.-M. Zhang, Energ. Comvers. Manage 145, 129 (2017)

    Article  ADS  Google Scholar 

  15. B. Zhang, H. Liu, S. Zhou, J. Gao, Appl. Math. Mech. 43, 1001 (2022)

    Article  Google Scholar 

  16. C. Wang, R. Zhou, S. Wang, H. Yuan, H. Cao, Energy 270, 126896 (2023)

    Article  Google Scholar 

  17. R. Du, J. **ao, S. Chang, L. Zhao, K. Wei, W. Zhang et al., J. Phys. D Appl. Phys. 56, 373002 (2023)

    Article  Google Scholar 

  18. Z. Li, L. Zhao, J. Wang, Z. Yang, Y. Peng, S. **e et al., Renew. Energ. 204, 546 (2023)

    Article  Google Scholar 

  19. R. Liu, L. He, X. Liu, S. Wang, L. Zhang, G. Cheng, Sustain. Energy. Techn. 59, 103417 (2023)

    Google Scholar 

  20. B. Feng, H. Xu, B. Wang, Y. Wang, Y. Zhu, R. Bi et al., Ocean Eng. 289, 116193 (2023)

    Article  Google Scholar 

  21. J. Wang, S. Zhou, Z. Zhang, D. Yurchenko, Energ. Comvers. Manage. 181, 645 (2019)

    Article  ADS  Google Scholar 

  22. G. Liang, D. Zhao, P. Guo, X. Wu, H. Nan, W. Sun, Energ. Comvers. Manage. 298, 117775 (2023)

    Article  Google Scholar 

  23. G. Shi, Y. Peng, D. Tong, J. Chang, Q. Li, H. **a, X. Wang et al., Energ. Comvers. Manage. 243, 114439 (2021)

    Article  Google Scholar 

  24. J.-X. Wang, J.-C. Li, W.-B. Su, X. Zhao, C.-M. Wang, Energy Rep. 8, 6521 (2022)

    Article  Google Scholar 

  25. K. Chen, F. Gao, Z. Liu, W.-H. Liao, Smart Mater. Struct. 30, 045017 (2021)

    Article  ADS  Google Scholar 

  26. N. Shao, J. Xu, X. Xu, Sensor. Actuat. A-Phys. 344, 113742 (2022)

    Article  Google Scholar 

  27. J. Wang, B. Fan, J. Fang, J. Zhao, C. Li, Energy Rep. 8, 11638 (2022)

    Article  Google Scholar 

  28. L. Tian, H. Shen, Q. Yang, R. Song, Y. Bian, Energ. Comvers. Manage. 283, 116920 (2023)

    Article  Google Scholar 

  29. M.F. Daqaq, J. Sound Vib. 329, 3621 (2010)

    Article  ADS  Google Scholar 

  30. Y. Cui, F. Wang, W.-J. Dong, M.-L. Yao, L.-D. Wang, Opt. Precis. Eng. 20, 2737 (2012)

    Article  Google Scholar 

  31. S. Fang, S. Zhou, D. Yurchenko, T. Yang, W.-H. Liao, Mech. Syst. Signal. Pr. 166, 108419 (2022)

    Article  Google Scholar 

  32. M.F. Daqaq, J. Sound Vib. 330, 2554 (2011)

    Article  ADS  Google Scholar 

  33. S. Zhou, J. Cao, A. Erturk, J. Lin, Appl. Phys. Lett. 102, 173901 (2013)

    Article  ADS  Google Scholar 

  34. S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energ. 133, 33 (2014)

    Article  ADS  Google Scholar 

  35. C. Hou, X. Zhang, H. Yu, X. Shan, G. Sui, T. **e, Energ. Comvers. Manage. 271, 116309 (2022)

    Article  Google Scholar 

  36. Z. Zhou, W. Qin, W. Du, P. Zhu, Q. Liu, Mech. Syst. Signal. Pr. 115, 162 (2019)

    Article  Google Scholar 

  37. Z. **e, L. Liu, W. Huang, R. Shu, S. Ge, Y. **n et al., Energ. Comvers. Manage. 278, 116717 (2023)

    Article  Google Scholar 

  38. K. Chen, X. Zhang, X. **ang, H. Shen, Q. Yang, J. Wang et al., J. Sound Vib. 561, 117822 (2023)

    Article  Google Scholar 

  39. Y. Li, P. Yan, Energy Rep. 10, 932 (2023)

    Article  Google Scholar 

  40. D. Man, Y. Zhang, G. Xu, X. Kuang, H. Xu, L. Tang et al., Alex. Eng. J. 76, 153 (2023)

    Article  ADS  Google Scholar 

  41. T. Yang, Q. Cao, Int. J. Mech. Sci. 156, 123 (2019)

    Article  Google Scholar 

  42. Y. Cao, J. Yang, D. Yang, Mech. Syst. Signal. Pr. 200, 110503 (2023)

    Article  Google Scholar 

  43. T. Wang, Q. Zhang, J. Han, W. Wang, Y. Yan, X. Cao et al., Energy 282, 128952 (2023)

    Article  Google Scholar 

  44. Y. Yan, Q. Zhang, J. Han, W. Wang, T. Wang, X. Cao et al., J. Sound Vib. 547, 117484 (2023)

    Article  Google Scholar 

  45. C. Wang, Q. Zhang, W. Wang, Aip. Adv. 7, 045314 (2017)

    Article  ADS  Google Scholar 

  46. W. Wang, J. Cao, C.R. Bowen, G. Litak, Eur. Phys. J. B. (2018). https://doi.org/10.1140/epjb/e2018-90180-y

    Article  Google Scholar 

  47. Q. He, M.F. Daqaq, J. Sound Vib. 333, 3479 (2014)

    Article  ADS  Google Scholar 

  48. P. Shi, Z. Liu, M. Li, X. Xu, D. Han, Chin. J. Phys. (2023). https://doi.org/10.1016/j.cjph.2023.05.004

    Article  Google Scholar 

  49. Q. Li, L. Bu, S. Lu, B. Yao, Q. Huang, X. Wang, Mech. Syst. Signal. Pr. 206, 110939 (2024)

    Article  Google Scholar 

  50. W. Wang, J. Cao, C.R. Bowen, Y. Zhang, J. Lin, Nonlinear. Dynam. 94, 1183 (2018)

    Article  Google Scholar 

  51. J.P. Norenberg, R. Luo, V.G. Lopes, J.V.L.L. Peterson, A. Cunha, Int. J. Mech. Sci. 257, 108542 (2023)

    Article  Google Scholar 

  52. G. Wang, Y. Zheng, Q. Zhu, Z. Liu, S. Zhou, J. Sound Vib. 543, 117384 (2023)

    Article  Google Scholar 

  53. Y. Zheng, G. Wang, Q. Zhu, G. Li, Y. Zhou, L. Hou et al., Commun. Nonlinear. Sci. 119, 107077 (2023)

    Article  Google Scholar 

  54. D. Huang, J. Han, S. Zhou, Q. Han, G. Yang, D. Yurchenko, Mech. Syst. Signal. Pr. 168, 108672 (2022)

    Article  Google Scholar 

  55. M.A. Halim, J.Y. Park, Sensor. Actuat. A-Phys. 208, 56 (2014)

    Article  ADS  Google Scholar 

  56. H. Liu, C. Lee, T. Kobayashi, C.J. Tay, C. Quan, Smart Mater. Struct. 21, 035005 (2012)

    Article  ADS  Google Scholar 

  57. Z. Li, X. Peng, G. Hu, Y. Peng, Int. J. Mech. Sci. 223, 107299 (2022)

    Article  Google Scholar 

  58. K. Zhou, H.L. Dai, A. Abdelkefi, H.Y. Zhou, Q. Ni, Aip. Adv. 9, 35228 (2019)

    Article  Google Scholar 

  59. K. Zhou, H.L. Dai, A. Abdelkefi, Q. Ni, Int. J. Mech. Sci. 166, 105233 (2020)

    Article  Google Scholar 

  60. K. Fan, Q. Tan, H. Liu, Y. Zhang, M. Cai, Mech. Syst. Signal. Pr. 117, 594 (2019)

    Article  Google Scholar 

  61. Z. Wang, W. Wang, L. Tang, R. Tian, C. Wang, Q. Zhang et al., Mech. Syst. Signal. Pr. 180, 109403 (2022)

    Article  Google Scholar 

  62. Y. Zhang, J. Cao, W. Wang, W.-H. Liao, J. Sound Vib. 494, 115890 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 12202400, 52171193), High-level Foreign Expert Introduction Plan of Henan Province (HNGD2023001), and the Key Research Development and Promotion Project in Henan Province (Grant No. 232102240037, 242102221044, 242102241026), Scientific Research Team Plan of Zhengzhou University of Aeronautics (23ZHTD01010), Key Scientific Research Projects of Henan Higher Education Institutions (24A130002), and Engineering Technology Research Center of Henan Province for General Aviation.

Author information

Authors and Affiliations

Authors

Contributions

Jianhui Wang: Methodology, Investigation, validation, Writing–original draft. Wei Wang: Conceptualization, Methodology, Funding acquisition, Writing–review & editing. Shuangyan Liu: Writing–review & editing, Funding acquisition. Zilin Li: Writing–review & editing. Ronghan Wei: Writing–review & editing, Funding acquisition.

Corresponding authors

Correspondence to Wei Wang, Shuangyan Liu or Ronghan Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, W., Liu, S. et al. Nonlinear dynamics of an asymmetric bistable energy harvester with an adjustable unilateral stopper. Eur. Phys. J. Plus 139, 540 (2024). https://doi.org/10.1140/epjp/s13360-024-05345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05345-2

Navigation