Log in

Magnetic-field-caused narrowing of hydrogenic spectral lines under a circularly polarized electromagnetic wave: the analytical solution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the literature, there was an exact analytical result for the splitting of hydrogen spectral lines in an electric field E rotating with a constant angular velocity Ω. In the reference frame rotating with the angular velocity of the field, the problem was reduced to a hydrogen atom in the static electric field crossed with a fictitious static magnetic field, the latter problem having an exact analytical solution. From the physical point of view, this was achieved by using the O4 symmetry of hydrogen atoms. In the present paper we provide an analytical solution for the splitting of hydrogen-like spectral lines in the situation where the rotating field represents a circularly polarized electromagnetic wave, but there is also a true, relatively strong magnetic field B that can be parallel or antiparallel to the angular velocity vector Ω. We show that by varying the true magnetic field, it is possible to diminish the splitting of hydrogenic spectral lines, which is a counterintuitive result. The most interesting case is where the true magnetic field completely cancels out the effect of the fictitious magnetic field, thus minimizing the splitting. In this case, the total intensity of the spectral line diminishes by 40%. This is yet another counterintuitive result. One important practical application could be the spectroscopic diagnostic of the electron cyclotron waves used as an additional heating method for plasmas in magnetic fusion machines. Another practical embodiment could relate to the configuration that can occur during relativistic laser plasma interactions where strong magnetic fields are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. V.S. Lisitsa, Opt. Spectrosc. 31, 468 (1971)

    Google Scholar 

  2. Yu.N. Demkov, B.S. Monozon, V.N. Ostrovsky, Sov. Phys. JETP 30, 775 (1970)

    ADS  Google Scholar 

  3. V. Fock, Z. Physik 98, 145 (1935)

    Article  ADS  Google Scholar 

  4. V.S. Lisita, G.V. Sholin, Sov. Phys. JETP 34, 484 (1972)

    ADS  Google Scholar 

  5. R.L. Greene, J. Cooper, E.W. Smith, J. Quant, Spectrosc. Rad. Transf. 15, 1025 (1975)

    Article  ADS  Google Scholar 

  6. A. Derevianko and E. Oks, in Physics of Strongly Coupled Plasmas, edits. W.D. Kraeft and M. Schlanges (World Scientific, Singapore) 1996, pp. 286.

  7. A. Derevianko and E. Oks, Proc. 14th Int. Conf. Spect. Line Shapes, AIP Conf. Proceedings 467 (1999) 148.

  8. E. Oks, J. Phys. B At. Mol. Opt. Phys. 50, 115001 (2017)

    Article  ADS  Google Scholar 

  9. E. Westerhof, Fusion Sci. Technol. 61, 304 (2012)

    Article  ADS  Google Scholar 

  10. V.S. Belyaev, V.P. Krainov, V.S. Lisitsa, A.P. Matafonov, Phys. Uspekhi 51, 793 (2008)

    Article  ADS  Google Scholar 

  11. V.S. Belyaev and A.P. Matafonov, In: Femtosecond-Scale Optics, edit. A. Andreev (InTech, Shanghai) 2011, p. 87.

  12. U. Wagner, M. Tatarakis, A. Gopal et al., Phys. Rev. E 70, e026401 (2004)

    Article  ADS  Google Scholar 

  13. M. Tatarakis, A. Gopal, I. Watts et al., Phys. Plasmas 9, 2244 (2002)

    Article  ADS  Google Scholar 

  14. M. Tatarakis, I. Watts, F.N. Beg et al., Nature 415, 280 (2002)

    Article  ADS  Google Scholar 

  15. S. Kato, T. Nakamura, K. Mima, Y. Sentoku, H. Nagatomo, Y. Owadano, J. Plasma Fusion Res. Ser. 6, 658 (2004)

    Google Scholar 

  16. F. Perogaro, S.V. Bulanov, F. Califano et al., Plasma Phys. Control. Fusion 38, B261 (1997)

    Google Scholar 

  17. M. Singh, K. Gopal, D. Gupta, Phys. Lett. A 380, 1437 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. T.V. Liseykina, S.V. Popruzhenko, A. Macchi, New J. Phys. 18, e072001 (2016)

    Article  ADS  Google Scholar 

  19. J.J. Santos, M. Bailly-Crandvaux, M. Ehret et al., Phys. Plasmas 25, e056705 (2018)

    Article  ADS  Google Scholar 

  20. E.P. Wigner, Group theory (Academic Press, New York, 1964)

    Google Scholar 

  21. A.Y. Faenov, E. Oks, E. Dalimier et al., Quant. Electron. 46, 338 (2016)

    Article  ADS  Google Scholar 

  22. H.K. Chung, M.H. Chen, W.L. Morgan, Yu. Ralchenko, R.W. Lee, High Energy Density Phys. 1, 3 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Oks.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oks, E., Angelo, P. & Dalimier, E. Magnetic-field-caused narrowing of hydrogenic spectral lines under a circularly polarized electromagnetic wave: the analytical solution. Eur. Phys. J. Plus 138, 884 (2023). https://doi.org/10.1140/epjp/s13360-023-04510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04510-3

Navigation