Log in

Complete depletion area in SOI junctionless FETs by multiple buried P-type pockets

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper describes a unique approach for calculating the complete depletion area in silicon-on-insulator (SOI) junctionless FETs (JL-FET). The suggested approach significantly reduces the OFF-current (IOFF) by utilizing several P-type pockets at the channel's bottom. Using calibrated simulations, the recommended device exhibits a substantial ION/IOFF ratio of 5 × 105, decreased DIBL and subthreshold slope, and an accurate ON-current (ION) value at accumulation modes. By using our approach and generating a larger depletion area, we reduce the gate capacitance (CG) and the gate–drain capacitance (CGD). The suggested structure's electrical properties exhibit encouraging results compared to a conventional device, and DC and RF effects have been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the authors upon reasonable request.]

References

  1. J.-P. Colinge, Multiple-gate SOI MOSFETs. Solid. State. Electron. 48, 897–905 (2004). https://doi.org/10.1016/j.sse.2003.12.020

    Article  ADS  Google Scholar 

  2. D. Flandre, J.P. Colinge, J. Chen, D. De Ceuster, J.P. Eggermont, L. Ferreira, B. Gentinne, P.G.A. Jespers, A. Viviani, R. Gillon, J.P. Raskin, A. Vander Vorst, D. Vanhoenacker-Janvier, F. Silveira, Fully-depleted SOI CMOS technology for low-voltage low-power mixed digital/analog/microwave circuits. Analog Integr. Circuits Signal Process. 21, 213–228 (1999). https://doi.org/10.1023/A:1008321919587

    Article  Google Scholar 

  3. A. Abbasi, A.A. Orouji, A silicon/indium arsenide source structure to suppress the parasitic bipolar-induced breakdown effect in SOI MOSFETs. Mater. Sci. Semicond. Process. 16, 1821–1827 (2013). https://doi.org/10.1016/j.mssp.2013.06.022

    Article  Google Scholar 

  4. D. Madadi, Investigation of junctionless fin-FET characterization in deep cryogenic temperature: DC and RF analysis. IEEE Access. 10, 130293–130301 (2022). https://doi.org/10.1109/ACCESS.2022.3228165

    Article  Google Scholar 

  5. D. Madadi, S. Mohammadi, Junction-less SOI FET with an embedded p+ Layer: investigation of DC, RF, and negative capacitance characteristics. SILICON (2023). https://doi.org/10.1007/s12633-023-02315-8

    Article  Google Scholar 

  6. C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, J.-P. Colinge, Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94, 053511 (2009). https://doi.org/10.1063/1.3079411

    Article  ADS  Google Scholar 

  7. P. Razavi, G. Fagas, I. Ferain, N.D. Akhavan, R. Yu, J.P. Colinge, Performance investigation of short-channel junctionless multigate transistors. In: 2011 12th Int. Conf. Ultim. Integr. Silicon, ULIS 2011, pp. 122–125 (2011). https://doi.org/10.1109/ULIS.2011.5758005

  8. D. Madadi, A.A. Orouji, Stacked single gate SOI 4H–SiC junctionless FET with a buried P-type 4H–SiC layer. Phys. Status Solidi. (2022). https://doi.org/10.1002/pssa.202100504

    Article  Google Scholar 

  9. Sahay, S., Kumar, M.J.: Modeling junctionless field-effect transistors. In: Junctionless Field-Effect Transistors, Wiley, pp. 327–384 (2019). https://doi.org/10.1002/9781119523543.ch8

  10. D. Madadi, A.A. Orouji, β-Ga2O3 double gate junctionless FET with an efficient volume depletion region. Phys. Lett. A. 412, 127575 (2021). https://doi.org/10.1016/j.physleta.2021.127575

    Article  Google Scholar 

  11. D. Madadi, A.A. Orouji, Investigation of 4H-SiC gate-all-around cylindrical nanowire junctionless MOSFET including negative capacitance and quantum confinements. Eur. Phys. J. Plus. 136, 785 (2021). https://doi.org/10.1140/epjp/s13360-021-01787-0

    Article  Google Scholar 

  12. D. Shafizade, M. Shalchian, F. Jazaeri, Charge-based modeling of ultra narrow junctionless cylindrical nanowire FETs. Solid. State. Electron. 185, 108153 (2021). https://doi.org/10.1016/j.sse.2021.108153

    Article  Google Scholar 

  13. F. Jazaeri, L. Barbut, A. Koukab, J.-M. Sallese, Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime. Solid. State. Electron. 82, 103–110 (2013). https://doi.org/10.1016/j.sse.2013.02.001

    Article  ADS  Google Scholar 

  14. M. Bolokian, A.A. Orouji, A. Abbasi, D. Madadi, Realizing of double-gate junctionless FET depletion region for 6 nm regime with an efficient layer. Phys. Status Solidi. (2022). https://doi.org/10.1002/pssa.202200214

    Article  Google Scholar 

  15. S. Sahay, M.J. Kumar, Realizing efficient volume depletion in SOI junctionless FETs. IEEE J. Electron. Devices Soc. 4, 110–115 (2016). https://doi.org/10.1109/JEDS.2016.2532965

    Article  Google Scholar 

  16. T. Rudenko, A. Nazarov, R. Yu, S. Barraud, K. Cherkaoui, P. Razavi, G. Fagas, Electron mobility in heavily doped junctionless nanowire SOI MOSFETs. Microelectron. Eng. 109, 326–329 (2013). https://doi.org/10.1016/j.mee.2013.03.050

    Article  Google Scholar 

  17. A. Rassekh, M. Fathipour, A single-gate SOI nanosheet junctionless transistor at 10-nm gate length: design guidelines and comparison with the conventional SOI FinFET. J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01475-9

    Article  Google Scholar 

  18. J. Luo, J. Chen, Wu. Qingqing, Z. Chai, J. Zhou, Yu. Tao, Y. Dong, Le. Li, W. Liu, C. Qiu, **. Wang, A tunnel diode body contact structure for high-performance SOI MOSFETs. IEEE Trans. Electron Devices. 59, 101–107 (2012). https://doi.org/10.1109/TED.2011.2173201

    Article  ADS  Google Scholar 

  19. A.A. Orouji, A. Abbasi, Novel partially depleted SOI MOSFET for suppression floating-body effect: an embedded JFET structure. Superlattices Microstruct. 52, 552–559 (2012). https://doi.org/10.1016/j.spmi.2012.06.006

    Article  ADS  Google Scholar 

  20. D. Madadi, β-Ga2O3 junctionless FET with an Ω shape 4H-SiC region in accumulation mode. SILICON (2021). https://doi.org/10.1007/s12633-021-01510-9

    Article  Google Scholar 

  21. A. Motamedi, A.A. Orouji, D. Madadi, Physical analysis of β-Ga2O3 gate-all-around nanowire junctionless transistors: short-channel effects and temperature dependence. J. Comput. Electron. 21, 197–205 (2022). https://doi.org/10.1007/s10825-021-01837-x

    Article  Google Scholar 

  22. R.T. Doria, M.A. Pavanello, R.D. Trevisoli, M. de Souza, C.-W. Lee, I. Ferain, N.D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti, J.-P. Colinge, Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices. 58, 2511–2519 (2011). https://doi.org/10.1109/TED.2011.2157826

    Article  ADS  Google Scholar 

  23. H. Huang, S. Wei, J. Pan, W. Xu, C.-C. Chen, Q. Mei, J. Chen, L. Geng, Z. Zhang, Y. Du, Threshold voltage model of total ionizing irradiated short-channel FD-SOI MOSFETs with gaussian do** profile. IEEE Trans. Nucl. Sci. 65, 2679–2690 (2018). https://doi.org/10.1109/TNS.2018.2864977

    Article  ADS  Google Scholar 

  24. S.J. Choi, D. Il Moon, S. Kim, J.P. Duarte, Y.K. Choi, Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron. Device Lett. 32, 125–127 (2011). https://doi.org/10.1109/LED.2010.2093506

    Article  ADS  Google Scholar 

  25. D. Madadi, A.A. Orouji, New high-voltage and high-speed β-Ga2O3 MESFET with amended electric field distribution by an insulator layer. Eur. Phys. J. Plus. 135, 578 (2020). https://doi.org/10.1140/epjp/s13360-020-00523-4

    Article  Google Scholar 

  26. D. Madadi, A.A. Orouji, A β-Ga2O3 MESFET to amend the carrier distribution by using a tunnel diode. IEEE Trans. Device Mater. Reliab. 21, 26–32 (2021). https://doi.org/10.1109/TDMR.2020.3046530

    Article  Google Scholar 

  27. D. Madadi, S. Mohammadi, Switching performance assessment of gate-all-around InAs–Si vertical TFET with triple metal gate, a simulation study. Nanoscale Res. Lett. 18, 37 (2023). https://doi.org/10.1186/s11671-023-03816-6

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The authors received no financial support for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

MB contributed to conceptualization, writing—original draft, and software. AAO performed supervision and review and editing. AA contributed to review and editing, and software. RN performed writing—original draft.

Corresponding author

Correspondence to Ali A. Orouji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no potential conflicts of interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving Human Participants and/or Animals

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolokian, M., Orouji, A.A., Abbasi, A. et al. Complete depletion area in SOI junctionless FETs by multiple buried P-type pockets. Eur. Phys. J. Plus 138, 527 (2023). https://doi.org/10.1140/epjp/s13360-023-04147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04147-2

Navigation