Log in

Insight into the spin-polarized structural, electronic, and magnetic properties of Nd2GaO4 and Nd2InO4 compounds

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The physical properties of Nd2GaO4 and Nd2InO4 Ruddlesden–Popper compounds such as: structural, electronic, and magnetic properties were calculated by applying the FP-LAPW + lo method (full-potential linearized augmented plane waves plus local orbitals), where this method was implemented in the WIEN2k package within spin-polarized density-functional theory (spin-DFT). The potential of exchange and correlation was treated for the structural properties by employing the generalized gradient approximation PBE-GGA. Furthermore, the PBE-GGA + U approximation is applied to describe the magnetic and the electronic properties of these compounds (U denotes the term of the Coulomb repulsion for “d” and “f” orbitals). For each alloy, several structural parameters are optimized at the equilibrium, like the bulk modulus (B0), the lattice constants (a0 and c0), and the first pressure derivative of the bulk modulus (B′). At equilibrium lattice parameters, the electronic properties of both Nd2GaO4 and Nd2InO4 compounds reveal that they are complete half-metallic materials. Both Nd2GaO4 and Nd2InO4 compounds show that they have an integer value of their total magnetic moment. The Nd atomic magnetic moment undergoes a reduction from its free space charge (4μB), and weak magnetic moments are generated on the nonmagnetic sites of Ga, In, O1, and O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

I declare that the data from this work are appropriate to this research and are not available elsewhere.

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    ADS  Google Scholar 

  2. W.E. Pickett, J.S. Moodera, Phys. Today 54, 39 (2001)

    Article  ADS  Google Scholar 

  3. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    ADS  Google Scholar 

  4. S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, H. Ji Lin, Appl. Phys. Lett. 88, 032503 (2006)

    Article  ADS  Google Scholar 

  5. I. Galanakis, Phys. Rev. B 71, 012413 (2005)

    Article  ADS  Google Scholar 

  6. K.L. Kobayashi, T. Kimura, H. Sawada, K. Terakuraand, Y. Tokura, Nature 395, 677 (1998)

    Article  ADS  Google Scholar 

  7. R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, A. Barry, J.M.D. Coey, Science 282, 85 (1998)

    Article  ADS  Google Scholar 

  8. M. Nakao, Phys. Rev. B 69, 214429 (2004)

    Article  ADS  Google Scholar 

  9. H. Ohno, F. Matsukura, A. Shen, Y. Sugawara, N. Akiba, T. Kuroiwa, Physica E 2, 904–908 (1998)

    Article  ADS  Google Scholar 

  10. I. Ait Elkoua, R. Masrour, A. Jabar, J. Cryst. Growth 576, 126381 (2021)

    Article  Google Scholar 

  11. Y. El Krimi, R. Masrour, A. Jabar, Inorg. Chem. Commun. 121, 108207 (2020)

    Article  Google Scholar 

  12. P. Sivaprakash, S. Esakk Muthu, A.K. Singh, K.K. Dubey, M. Kannan, S. Muthukumaran, S. Guha, M. Kar, S. Singh, S. Arumugam, J. Magn. Magn. Mater. 514, 167136 (2020)

    Article  Google Scholar 

  13. Y. Tian, J. Ouyang, H. **ao, Y. Zhang, Ceram. Int. 47, 29197–29204 (2021)

    Article  Google Scholar 

  14. J. Pilo, J.L. Rosas, E. Carvajal, M. Cruz-Irisson, O. Navarro, Phys. Procedia 75, 1035–1040 (2015)

    Article  ADS  Google Scholar 

  15. N. Tahiri, S. Dahbi, I. Dani, O. El Bounagui, H. Ez-Zahraouy, Comput. Theor. Chem. 1204, 113421 (2021)

    Article  Google Scholar 

  16. I. Asfour, H. Rached, S. Benalia, D. Rached, J. Alloys Compd. 676, 440–451 (2016)

    Article  Google Scholar 

  17. Z. Gao, L. Li, Y. Ge, S. Zhu, H. Lan, B. Chen, B. Pan, J. Alloys Compd. 900, 163418 (2022)

    Article  Google Scholar 

  18. W. Wang, C.-l Chang, Qi. Li, F.-l Xue, L. Sun, Te. Huang, Superlattices Microstruct. 136, 106325 (2019)

    Article  Google Scholar 

  19. M.I. Khan, H. Arshad, M. Rizwan, S.S.A. Gillani, M. Zafar, S. Ahmed, M. Shakil, J. Alloys Compd. 819, 152964 (2020)

    Article  Google Scholar 

  20. S.N. Ruddlesden, P. Popper, Acta Crytallogr. 11, 54–56 (1956)

    Article  Google Scholar 

  21. P.D. Battle, M.A. Green, N. Scott Laskey, J.E. Millburn, L. Murphy, M.J. Rosseinsky, S.P. Sullivan, J.F. Vente, J. Chem. Mater. 9, 552 (1997)

    Article  Google Scholar 

  22. D.P. Matheis, R.L. Snyder, J. Powder Diffr. 5, 8 (1990)

    Article  ADS  Google Scholar 

  23. W.H. Weber, C.R. Peters, E.M. Logothetis, J. JOSA B 6, 455 (1989)

    Article  ADS  Google Scholar 

  24. M.A. Green, K. Prassides, P. Day, D.A. Neumann, Int. J. Inorg. Mater. 2, 35 (2000)

    Article  Google Scholar 

  25. N. Wu, W. Wang, Y. Zhong, G. Yang, J. Qu, Z. Shao, J. Chem. Electro Chem. 4, 2378 (2017)

    Google Scholar 

  26. R.J. Woolley, S.J. Skinner, J. Power Sources 243, 790 (2013)

    Article  ADS  Google Scholar 

  27. T. Broux, C. Prestipino, M. Bahout, O. Hernandez, D. Swain, S. Paofai, T.C. Hansen, C. Greaves, J. Chem. Mater. 25, 4053 (2013)

    Article  Google Scholar 

  28. J. Wan, J.B. Goodenough, J.H. Zhu, J. Solid State Ion. 178, 281 (2007)

    Article  Google Scholar 

  29. S. Choi, S. Yoo, J.-Y. Shin, G. Kim, J. Electrochem. Soc. 158, B995 (2011)

    Article  Google Scholar 

  30. C. Navas, H.C. zur Loye, J. Solid State Ion. 93, 171 (1996)

    Article  Google Scholar 

  31. K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, Y. Lei, J. Appl. Phys. 113, 014304 (2013)

    Article  ADS  Google Scholar 

  32. K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114, 034901 (2013)

    Article  ADS  Google Scholar 

  33. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.H.K. Madsen, L. Marks, J. Chem. Phys. 452, 074101 (2020)

    Article  ADS  Google Scholar 

  34. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  35. P. Blaha, K. Schwarz, P. Sorantin, S.K. Trickey, Comput. Phys. Commun. 59, 339 (1990)

    Article  Google Scholar 

  36. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  37. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  38. D. van der Marel, G.A. Sawatzky, Phys. Rev. B 37, 10674 (1988)

    Article  Google Scholar 

  39. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Article  ADS  Google Scholar 

  40. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  41. S.L. Shang, Y. Wang, D. Kim, Z.-K. Liu, Comput. Mater. Sci. 47, 1040 (2010)

    Article  Google Scholar 

  42. A. Yakoubi, O. Baraka, B. Bouhafs, Results Phys. 2, 58 (2012)

    Article  ADS  Google Scholar 

  43. Z.H. Zeng, F. Calle-Vallejo, M.B. Mogensen, J. Rossmeisl, Phys. Chem. Chem. Phys. 15, 7526 (2013)

    Article  Google Scholar 

  44. D.P. Rai, A. Shankar, S. Sandeep, M.P. Ghimire, R. Khenata, R.K. Thapa, RSC Adv. 5, 95353 (2015)

    Article  ADS  Google Scholar 

  45. Z.-M. Yu, S. Guan, X.-L. Sheng, W. Gao, S.A. Yang, Phys. Rev. Lett. 124, 037701 (2020)

    Article  ADS  Google Scholar 

  46. X. Wang, F. Zhou, T. Yang, M. Kuang, Z.-M. Yu, G. Zhang, Phys. Rev. B 104, L041104 (2021)

    Article  ADS  Google Scholar 

  47. F. Zhou, Z. Zhang, H. Chen, M. Kuang, T. Yang, X. Wang, Phys. Rev. B 104, 174108 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research project (for Amel Laref) was supported by a grant from the “Research centre of the Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

Funding

The present work is supported by the Algerian National Scientific Research Agency's University Training Research Projects (PRFU) (Grant No. B00L02UN290120220002).

Author information

Authors and Affiliations

Authors

Contributions

1-Conceptualization was contributed by MEAM. 2-Data curation was contributed by MEAM. 3-Formal analysis was contributed by MEAM. 4-Funding acquisition was contributed by MEAM. 5-Investigation was contributed by MEAM. 6-Methodology was contributed by MEAM. 7-Project administration was contributed by MEAM. 8-Resources were contributed by MEAM. 9-Software was contributed by MEAM. 10-Supervision was contributed by MEAM and AL. 11-Validation was contributed by MEAM and AL. 12-Visualization was contributed by MEAM and AL. 13-Writing—original draft was contributed by MEAM and AL. 14-Writing—review editing was contributed by MEAM and AL.

Corresponding author

Correspondence to Mohammed El Amine Monir.

Ethics declarations

Ethical approval

I declare that this manuscript titled “Insight into the spin-polarized structural, electronic, and magnetic properties of Nd2GaO4 and Nd2InO4 compounds” is original and it has been written by the stated authors who are all aware of its content and approve its submission, while it has not been published previously and it is not under consideration for publication elsewhere.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Amine Monir, M., Laref, A. Insight into the spin-polarized structural, electronic, and magnetic properties of Nd2GaO4 and Nd2InO4 compounds. Eur. Phys. J. Plus 137, 725 (2022). https://doi.org/10.1140/epjp/s13360-022-02965-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02965-4

Navigation