Log in

Kinetic study of ion-acoustic waves in non-thermal Vasyliunas–Cairns distributed plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The plasma kinetic theory with Vlasov–Poisson model is taken into account to study the dispersion relation and dam** rate of one of the fundamental longitudinal low-frequency mode, i.e., ion-acoustic waves (IAWs) in a hybrid Vasyliunas–Cairns distributed plasma using the 3D Vasyliunas–Cairns distribution function (VCDF) for non-thermal electrons. The longitudinal dielectric response function for ion-acoustic waves in non-thermal plasmas is calculated by considering the electrons as Vasyliunas–Cairns distributed while the ions are taken to be Maxwellian. Both the dispersion and dam** rate of IAWs are significantly swayed by the simultaneous presence of two non-thermality parameters \(^{\prime }\alpha ^{\prime }\) and \(^{\prime }\kappa ^{\prime }\). It is found that the dam** rate of IAWs is remarkably higher for Maxwellian distributed electron plasmas in comparison to non-thermal Vasyliunas–Cairns distributed plasmas. The analytical expression of dam** rate of IAWs is obtained under weak dam** approximation, while numerical plots of strong dam** rates (when ion temperature become almost equal to electron temperature) are also obtained using Newton–Raphson method from exact solution of dispersion relation equation obtained from dielectric response function. The results are applicable to space plasma regions where highly energetic particles having VCDF exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment : The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. D.A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics with Space and Laboratory Applications (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  2. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd edn. (Springer, Switzerland, 2016)

    Book  Google Scholar 

  3. A.Y. Wong, N.D. Angelo, R.W. Motley, Propagation and dam** of ion acoustic waves in highly ionized plasmas. Phys. Rev. Lett. 9, 415 (1962). https://doi.org/10.1103/PhysRevLett.9.415

    Article  ADS  Google Scholar 

  4. B.D. Fried, Roy W. Gould, Longitudinal ion oscillations in a hot plasma. Phys. Fluids 4, 139 (1961). https://doi.org/10.1063/1.1706174

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Rehman, M. Ahmad, M.A. Shahzad, Revisiting some analytical and numerical interpretations of Cairns and Kappa-Cairns distribution functions. Phys. Plasmas 27, 100901 (2020). https://doi.org/10.1063/5.0018906

    Article  Google Scholar 

  6. W.D. Jones, Sound Waves in Plasmas—A Basic Phenomenon and a Simple Diagnostic Tool (Oak Ridge National Laboratory Operated by Union Carbide Corporation for the U. S. Atomic Energy Commission, Oak Ridge, 1967)

  7. L. Liyan, D. Jiulin, Ion acoustic waves in the plasma with the power-law-distribution in nonextensive statistics. ar**v:0804.3732

  8. L. Ding, Chen Yinhua et al., Plasma Physics (Higher Education Press, Bei**g, 2006)

    Google Scholar 

  9. J. Xu, S. **, Plasma Physics (Nuclear Energy Press, Bei**g, 1981)

    Google Scholar 

  10. N.P. Abraham, S. Sebastian, G. Sreekala, R. Jayapal, Ion-acoustic instabilities in a multi-ion plasma. Hindawi Publ. Corp. J. Astrophys. 2013, 838534. https://doi.org/10.1155/2013/838534

  11. L. Tonks, I. Langmuir, Oscillations in ionized gases. Phys. Rev. 33, 195 (1929). https://doi.org/10.1103/PhysRev.33.195

    Article  ADS  MATH  Google Scholar 

  12. R.W. Revans, The transmission of waves through an ionized gas. Phys. Rev. 44, 798 (1933). https://doi.org/10.1103/PhysRev.44.798

    Article  ADS  Google Scholar 

  13. I. Alexeff, R.V. Neidigh, Observations of ionic sound waves in plasmas: their properties and applications. Phys. Rev. 129, 516 (1963). https://doi.org/10.1103/PhysRev.129.516

    Article  ADS  Google Scholar 

  14. E.T. Sarris, S.M. Krimigis, A.T.Y. Lui, K.L. Ackerson, L.A. Frank, D.J. Williams, Relationship between energetic particles and plasmas in the distant plasma sheet. Geophys. Res. Lett. 8, 349 (1981). https://doi.org/10.1029/GL008i004p00349

    Article  ADS  Google Scholar 

  15. D.J. Williams, D.G. Mitchell, S.P. Christon, Implications of large flow velocity signatures in nearly isotropic ion distributions. Geophys. Res. Lett. 15, 303 (1988). https://doi.org/10.1029/gl015i004p00303

    Article  ADS  Google Scholar 

  16. J.T. Gosling, J.R. Asbridge, S.J. Bame, W.C. Feldman, R.D. Zwickl, G. Paschmann, N. Sckopke, R.J. Hynds, Interplanetary ions during an energetic storm particle event: the distribution function from solar wind thermal energies to 1.6 MeV. J. Geophys. Res. [Space Phys.] 86, 547 (1981). https://doi.org/10.1029/JA086iA02p00547

    Article  ADS  Google Scholar 

  17. J.M. Liu, J.S. De Groot, J.P. Matte, T.W. Johnston, R.P. Drake, Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions. Phys. Rev. Lett. 72, 2717 (1994). https://doi.org/10.1103/PhysRevLett.72.2717

    Article  ADS  Google Scholar 

  18. D. Debnath, A. Bandyopadhyay, Combined effect of Kappa and Cairns distributed electrons on ion acoustic solitary structures in a collisionless magnetized dusty plasma. Astrophys. Space Sci. 365, 72 (2020). https://doi.org/10.1007/s10509-020-03786-6

    Article  ADS  MathSciNet  Google Scholar 

  19. V. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968). https://doi.org/10.1029/JA073i009p02839

    Article  ADS  Google Scholar 

  20. S. Olbert, R.L. Carovillano, J.F. McClay, H.R. Radoski, Summary of experimental results from MIT detector on IMP-1, in Physics of the Magnetosphere: Based Upon the Proceedings of the Conference held at Boston College, 19–28 June 1967 (Springer, Boston, 1968)

  21. R.A. Cairns, R. Bingham, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, A.A. Mamun, Ion sound solitary waves with density depressions. J. Phys. 5, C6-43 (1995). https://doi.org/10.1051/jp4:1995608

    Article  Google Scholar 

  22. K. Aoutou, M. Tribeche, T.H. Zerguini, Electrostatic solitary structures in dusty plasmas with nonthermal and superthermal electrons. Phys. Plasmas 15, 013702 (2008). https://doi.org/10.1063/1.2828073

    Article  ADS  Google Scholar 

  23. A. Rehman, M.A. Shahzad, S. Mahmood, M. Bilal, Numerical and analytical study of electron plasma waves in nonthermal Vasyliunas–Cairns distributed plasmas. J. Geophys. Res. Space Phys. 126, e2021JA029626 (2021). https://doi.org/10.1029/2021JA029626

    Article  ADS  Google Scholar 

  24. D. Summers, R.M. Thorne, The modified plasma dispersion function. Phys. Fluids B 3, 1835 (1991). https://doi.org/10.1063/1.859653

    Article  ADS  Google Scholar 

  25. V. Pierrard, M. Lazar, Kappa distributions: theory and applications in space plasmas (2010). https://doi.org/10.1007/s11207-010-9640-2

  26. P.O. Dovner, A.I. Eriksson, R. Bostrom, B. Holback, Freja multiprobe observations of electrostatic solitary structure. Geophys. Res. Lett. 21, 1827 (1994). https://doi.org/10.1029/94GL00886

    Article  ADS  Google Scholar 

  27. R. Bostrom, Observations of weak double layers on auroral field lines. IEEE Trans. Plasma Sci. 20, 756 (1992). https://doi.org/10.1109/27.199524

    Article  ADS  Google Scholar 

  28. G. Sarri, M.E. Dieckmann, I. Kourakis, M. Borghesi, Shock creation and particle acceleration driven by plasma expansion into a rarefied medium. Phys. Plasmas 17, 082305 (2010). https://doi.org/10.1063/1.3469762

    Article  ADS  Google Scholar 

  29. D. Darian, S. Marholm, M. Mortensen, W.J. Miloch, Theory and simulations of spherical and cylindrical Langmuir probes in non-Maxwellian plasmas. Plasma Phys. Control. Fusion 61, 085025 (2019). https://doi.org/10.1088/1361-6587/ab27ff

    Article  ADS  Google Scholar 

  30. L.F. Ziebell, R. Gaelzer, F.J.R. Simões Jr., Dispersion relation for electrostatic waves in plasmas with isotropic and anisotropic Kappa distributions for electrons and ions. J. Plasma Phys. 83, 905830503 (2017). https://doi.org/10.1017/S0022377817000733

    Article  Google Scholar 

  31. R. Gaelzer, M.C. de Juli, L.F. Ziebell, Effect of superthermal electrons on Alfvén wave propagation in the dusty plasmas of solar and stellar winds. J. Geophys. Res. 115, A09109 (2010). https://doi.org/10.1029/2009JA015217

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, M.A., Aman-ur-Rehman, Mahmood, S. et al. Kinetic study of ion-acoustic waves in non-thermal Vasyliunas–Cairns distributed plasmas. Eur. Phys. J. Plus 137, 236 (2022). https://doi.org/10.1140/epjp/s13360-022-02463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02463-7

Navigation