Log in

Development and evaluation of a simple Raman spectral searching algorithm

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Raman spectroscopy has grown to a frequently applied technique in the analysis of art and archaeological objects. The growth in applications is further driven by the development of new, small and compact spectrometers that are well suited for in situ analysis. Different spectral databases have been composed, to allow fast identification of the materials at hand. However, the automated identification of the highly similar spectra of contemporary synthetic organic pigments is not straightforward, as spectral libraries that contain several hundreds of spectra are typically recorded on benchtop spectrometers that have different spectral resolutions and sensitivities and often use different excitation laser wavelengths. Therefore, here a simple automated spectral searching algorithm is proposed that is based on the comparison of a series of Raman band positions, to identify the materials. Thus, many of these interferences can be avoided. In this work, the proposed algorithm is tested on spectra that were recorded by using portable Raman instruments on mock-up samples as well as during the in situ analysis of street art.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. I.M. Bell, R.J. Clark, P.J. Gibbs, Raman spectroscopic library of natural and synthetic pigments (pre-≈ 1850 AD). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53(12), 2159–2179 (1997)

    Article  ADS  Google Scholar 

  2. L. Burgio, R.J. Clark, Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57(7), 1491–1521 (2001)

    Article  ADS  Google Scholar 

  3. K. Castro, M. Pérez-Alonso, M.D. Rodríguez-Laso, L.A. Fernández, J.M. Madariaga, On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal. Bioanal. Chem. 382(2), 248–258 (2005)

    Article  Google Scholar 

  4. G. Burrafato, M. Calabrese, A. Cosentino, A.M. Gueli, S.O. Troja, A. Zuccarello, ColoRaman project: Raman and fluorescence spectroscopy of oil, tempera and fresco paint pigments. J. Raman Spectrosc. 35(10), 879–886 (2004)

    Article  ADS  Google Scholar 

  5. G. Marucci, A. Beeby, A.W. Parker, C.E. Nicholson, Raman spectroscopic library of medieval pigments collected with five different wavelengths for investigation of illuminated manuscripts. Anal. Methods 10(10), 1219–1236 (2018)

    Article  Google Scholar 

  6. P. Vandenabeele, B. Wehling, L. Moens, H. Edwards, M. De Reu, G. Van Hooydonk, Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal. Chim. Acta 407(1–2), 261–274 (2000)

    Article  Google Scholar 

  7. C. Daher, C. Paris, A.S. Le Hô, L. Bellot-Gurlet, J.P. Échard, A joint use of Raman and infrared spectroscopies for the identification of natural organic media used in ancient varnishes. J. Raman Spectrosc. 41(11), 1494–1499 (2010)

    Article  ADS  Google Scholar 

  8. H.G. Edwards, E.M. Ali, Raman spectroscopy of archaeological and ancient resins: Problems with database construction for applications in conservation and historical provenancing. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 80(1), 49–54 (2011)

    Article  ADS  Google Scholar 

  9. B. Lafuente, R.T. Downs, H. Yang, N. Stone, The power of databases: the RRUFF project. In Highlights in mineralogical crystallography (pp. 1–29). Walter de Gruyter GmbH (2016)

  10. J. De Gelder, K. De Gussem, P. Vandenabeele, L. Moens, Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38(9), 1133–1147 (2007)

    Article  ADS  Google Scholar 

  11. D. Giordano, D. González-García, J.K. Russell, S. Raneri, D. Bersani, L. Fornasini et al., A calibrated database of Raman spectra for natural silicate glasses: implications for modelling melt physical properties. J. Raman Spectrosc. 51, 1822–1838 (2019)

    Article  ADS  Google Scholar 

  12. P. Vandenabeele, D.M. Grimaldi, H.G. Edwards, L. Moens, Raman spectroscopy of different types of Mexican copal resins. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 59(10), 2221–2229 (2003)

    Article  ADS  Google Scholar 

  13. P. Vandenabeele, M. Ortega-Aviles, D.T. Castilleros, L. Moens, Raman spectroscopic analysis of Mexican natural artists’ materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 68(4), 1085–1088 (2007)

    Article  ADS  Google Scholar 

  14. A. Coccato, D. Bersani, A. Coudray, J. Sanyova, L. Moens, P. Vandenabeele, Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. J. Raman Spectrosc. 47(12), 1429–1443 (2016)

    Article  ADS  Google Scholar 

  15. B. Gilbert, S. Denoël, G. Weber, D. Allart, Analysis of green copper pigments in illuminated manuscripts by micro-Raman spectroscopy. Analyst 128(10), 1213–1217 (2003)

    Article  ADS  Google Scholar 

  16. A. Coccato, J. Jehlicka, L. Moens, P. Vandenabeele, Raman spectroscopy for the investigation of carbon-based black pigments. J. Raman Spectrosc. 46(10), 1003–1015 (2015)

    Article  ADS  Google Scholar 

  17. W. Fremout, S. Saverwyns, Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J. Raman Spectrosc. 43(11), 1536–1544 (2012)

    Article  ADS  Google Scholar 

  18. P. Vandenabeele, L. Moens, H.G. Edwards, R. Dams, Raman spectroscopic database of azo pigments and application to modern art studies. J. Raman Spectrosc. 31(6), 509–517 (2000)

    Article  ADS  Google Scholar 

  19. N.C. Scherrer, Z. Stefan, D. Francoise, F. Annette, K. Renate, Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 73(3), 505–524 (2009)

    Article  ADS  Google Scholar 

  20. C. Defeyt, P. Vandenabeele, B. Gilbert, J. Van Pevenage, R. Cloots, D. Strivay, Contribution to the identification of α-, β-and ε-copper phthalocyanine blue pigments in modern artists’ paints by X-ray powder diffraction, attenuated total reflectance micro-fourier transform infrared spectroscopy and micro-Raman spectroscopy. J. Raman Spectrosc. 43(11), 1772–1780 (2012)

    Article  ADS  Google Scholar 

  21. Infrared and Raman users group: http://irug.org

  22. https://soprano.kikirpa.be

  23. S. Saverwyns, Russian avant-garde… or not? A micro-Raman spectroscopy study of six paintings attributed to Liubov Popova. J. Raman Spectrosc. 41(11), 1525–1532 (2010)

    Article  ADS  Google Scholar 

  24. J. De Gelder, P. Vandenabeele, F. Govaert, L. Moens, Forensic analysis of automotive paints by Raman spectroscopy. J. Raman Spectrosc. Int. J. Orig. Work Asp. Raman Spectrosc. Incl. High. Order Processes Brillouin Rayleigh Scatter. 36(11), 1059–1067 (2005)

    Google Scholar 

  25. C. Muehlethaler, G. Massonnet, P. Esseiva, The application of chemometrics on Infrared and Raman spectra as a tool for the forensic analysis of paints. Forensic Sci. Int. 209, 173–182 (2011)

    Article  Google Scholar 

  26. D. Lambert, C. Muehlethaler, P. Esseiva, G. Massonnet, Combining spectroscopic data in the forensic analysis of paint: application of a multiblock technique as chemometric tool. Forensic Sci. Int. 263, 39–47 (2016)

    Article  Google Scholar 

  27. A. Nevin, I. Osticioli, D. Anglos, A. Burnstock, S. Cather, E. Castellucci, Raman spectra of proteinaceous materials used in paintings: a multivariate analytical approach for classification and identification. Anal. Chem. 79(16), 6143–6151 (2007)

    Article  Google Scholar 

  28. P. Vandenabeele, A. Hardy, H.G. Edwards, L. Moens, Evaluation of a principal components-based searching algorithm for Raman spectroscopic identification of organic pigments in 20th century artwork. Appl. Spectrosc. 55(5), 525–533 (2001)

    Article  ADS  Google Scholar 

  29. A. Nevin, I. Osticioli, D. Anglos, A. Burnstock, S. Cather, E. Castellucci, The analysis of naturally and artificially aged protein-based paint media using Raman spectroscopy combined with principal component analysis. J. Raman Spectrosc. 39(8), 993–1000 (2008)

    Article  ADS  Google Scholar 

  30. N. Navas, J. Romero-Pastor, E. Manzano, C. Cardell, Raman spectroscopic discrimination of pigments and tempera paint model samples by principal component analysis on first-derivative spectra. J. Raman Spectrosc. 41(11), 1486–1493 (2010)

    Article  ADS  Google Scholar 

  31. N.S. Daly, M. Sullivan, L. Lee, K. Trentelman, Multivariate analysis of Raman spectra of carbonaceous black drawing media for the in situ identification of historic artist materials. J. Raman Spectrosc. 49(9), 1497–1506 (2018)

    Article  ADS  Google Scholar 

  32. C. Daher, L. Bellot-Gurlet, A.S. Le Hô, C. Paris, M. Regert, Advanced discriminating criteria for natural organic substances of Cultural Heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT–IR signatures. Talanta 115, 540–547 (2013)

    Article  Google Scholar 

  33. J. González-Vidal, R. Pérez-Pueyo, M.J. Soneira, Automatic classification system of Raman spectra applied to pigments analysis. J. Raman Spectrosc. 47, 1408–1414 (2016)

    Article  ADS  Google Scholar 

  34. C. Defeyt, J. Van Pevenage, L. Moens, D. Strivay, P. Vandenabeele, Micro-Raman spectroscopy and chemometrical analysis for the distinction of copper phthalocyanine polymorphs in paint layers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 115, 636–640 (2013)

    Article  ADS  Google Scholar 

  35. P. Vandenabeele, L. Moens, Micro-Raman spectroscopy of natural and synthetic indigo samples. Analyst 128(2), 187–193 (2003)

    Article  ADS  Google Scholar 

  36. M. Castanys Tutzó, R. Perez-Pueyo, M.J. Soneira, S. Ruiz Moreno, Fuzzy logic: a technique to Raman spectra recognition. J. Raman Spectrosc. 37(10), 1003–1011 (2006)

    Article  ADS  Google Scholar 

  37. R. Perez-Pueyo, M.J. Soneira, S. Ruiz-Moreno, A fuzzy logic system for band detection in Raman spectroscopy. J. Raman Spectrosc. 35(8–9), 808–812 (2004)

    Article  ADS  Google Scholar 

  38. D. Hutsebaut, P. Vandenabeele, L. Moens, Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst 130(8), 1204–1214 (2005)

    Article  ADS  Google Scholar 

  39. P. Vandenabeele, Practical Raman Spectroscopy: An Introduction (Wiley, 2013), pp. 114–115

    Book  Google Scholar 

  40. C. Conti, A. Botteon, M. Bertasa, C. Colombo, M. Realini, D. Sali, Portable sequentially shifted excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces. Analyst 141(15), 4599–4607 (2016)

    Article  ADS  Google Scholar 

  41. A. Culka, J. Hyršl, J. Jehlička, Gem and mineral identification using GL gem raman and comparison with other portable instruments. Appl. Phys. A 122(11), 959 (2016)

    Article  ADS  Google Scholar 

  42. A. Rousaki, M. Costa, D. Saelens, S. Lycke, A. Sánchez, J. Tuñón, B. Ceprián et al., A comparative mobile Raman study for the on field analysis of the Mosaico de los Amores of the Cástulo Archaeological Site (Linares, Spain). J. Raman Spectros. 51, 1913 (2019)

    Article  ADS  Google Scholar 

  43. W. Herbst, K. Hunger, Industrial Organic Pigments: Production, Properties, Applications (Wiley, 2006).

    Google Scholar 

  44. https://www.mathworks.com/help/signal/ug/prominence.html

Download references

Acknowledgements

A.R. thanks the Research Foundation Flanders/FWO-Vlaanderen for her postdoctoral Grant (12X1919N). E.P. is grateful to Fondazione Flaminia and to the University of Bologna for her traineeship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Rousaki.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rousaki, A., Paolin, E., Sciutto, G. et al. Development and evaluation of a simple Raman spectral searching algorithm. Eur. Phys. J. Plus 136, 620 (2021). https://doi.org/10.1140/epjp/s13360-021-01577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01577-8

Navigation