Log in

Design of InSb-based quantum-well laser with emission line at 5.6 μm

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work reports on the optimization of factors affecting the performance of InSb-based quantum-well (QW) laser. The QW laser designs and its parameters are improved using physical modeling and simulation. The designed QWs can emit light at a range of 5.40–6.48 µm. The InAlSb is used as barrier between InSb active region and InAlAs cladding layer. To optimize the laser performance, the influence of Al concentration variation in barrier and cladding layers, as well as thickness of the active region on the QW, is investigated. The optical and electro-optical characteristics are compared with related experimental results. The output power, spontaneous emission and peak intensities versus injected current of the proposed QW structures demonstrate good similarity with similar reported grown samples. It is demonstrated that Auger recombination is truly reflected in the proposed QWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Svelto, Principles of Lasers, 5Th edn. (Springer, New York, 2010).

    Book  Google Scholar 

  2. A. Vicet, D.A. Yarekha, A. Pe´rona, Y. Rouillard, S. Gaillard, A.N. Baranov, Trace gas detection with antimonide-based quantum-well diode lasers. Spectrochimica Acta Part A 58, 2405–2412 (2002)

    Article  ADS  Google Scholar 

  3. C.L. Felix, W.W. Bewley, I. Vurgaftman, R.E. Bartolo, D.W. Stokes, Mid-infrared W quantum-well lasers for noncryogenic continuous-wave operation. Appl. Opt. 40, 806–811 (2001)

    Article  ADS  Google Scholar 

  4. M.S. Diware, T.J. Kim, J.J. Yoon, N.S. Barange, J.S. Byun, Dielectric functions of In1-xAlxSb alloys for arbitrary compositions with parametric modeling. Thin Solid Films 546, 26–30 (2013)

    Article  ADS  Google Scholar 

  5. O. Morohara, H. Geka, H. Fujita, K. Ueno, D. Yasuda, Y. Sakurai, Y. Shibata, N. Kuze, High-efficiency AlInSb mid-infrared LED with dislocation filter layers for gas sensors. J. Cryst. Growth 518, 14–17 (2019)

    Article  ADS  Google Scholar 

  6. E. Kapon, Semiconductor Laser I (Academic Press, London, 1999), pp. 2–4

    Google Scholar 

  7. H.K. Choi, S.J. Eglash, G.W. Turner, Double heterostructure diode lasers emitting at 3 μm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett. 64, 2474–2476 (1994)

    Article  ADS  Google Scholar 

  8. T.G. Tenev, A. Palyi, B.I. Mirza, G.R. Nash, M. Fearn, S.J. Smith, L. Buckle, M.T. Emeny, T. Ashley, J.H. Jefferson, C.J. Lambert, Energy level spectroscopy of InSb quantum wells using quantum-well LED emission. Phys. Rev. B 79, 085301–085314 (2009)

    Article  ADS  Google Scholar 

  9. G.R. Nash, S.J.B. Przeslak, S.J. Smith, G. de Valicourt, A.D. Andreev, P.J. Carrington, M. Yin, A. Krier, S.D. Coomber, L. Buckle, M.T. Emeny, T. Ashley, Mid infrared GaInSb/AlGaInSb quantum well laser diodes operating above 200 K. Appl. Phys. Lett. 94, 091111–091113 (2009)

    Article  ADS  Google Scholar 

  10. S. Salimpour, H. Rasooli Saghai, Impressive reduction of dark current in InSb infrared photodetector to achieve high temperature performance. J. Optoelectron. Nanostruct. 3, 81–96 (2018)

    Google Scholar 

  11. M. Nadimi, A. Sadr, Simulation of high operating temperature mid-infrared photodetector based on indium antimonide. Middle-East J. Sci. Res. 13, 1510–1514 (2013)

    Google Scholar 

  12. T. Ashley, Type-I InSb-based mid-infrared diode lasers. Phil. Trans. R. Soc. A 359, 475–488 (2001)

    Article  ADS  Google Scholar 

  13. T. Ashley, C.T. Elliott, N.T. Gordon, R.S. Hall, A.D. Johnson, G.J. Pryce, Uncooled InSb/ln1-xAlxSb mid-infrared emitter. Appl. Phys. Lett. 64, 2433–2435 (1994)

    Article  ADS  Google Scholar 

  14. G.R. Nash, M.K. Haigh, H.R. Hardaway, L. Buckle, A.D. Andreev, N.T. Gordon, S.J. Smith, M.T. Emeny, T. Ashley, InSb ∕ AlInSb quantum-well light-emitting diodes. Appl. Phys. Lett. 88, 051107 (2006)

    Article  ADS  Google Scholar 

  15. B.I. Mirza, G.R. Nash, S.J. Smith, L. Buckle, S.D. Coomber, M.T. Emeny, T. Ashley, Recombination processes in midinfrared AlxIn1 − xSb light-emitting diodes. J. Appl. Phys. 104, 063113–063117 (2008)

    Article  ADS  Google Scholar 

  16. G. Moloudian, M. Nouri, Design and simulation of semiconductor laser with GaAs active region. Int. J. Mech. Electr. Comput. Technol. IJMEC 5, 2340–2346 (2015)

    Google Scholar 

  17. C. Duman, B. Cakmak, Comparative modeling results for ridge waveguide MQW and hybrid Si/III-V lasers. J. Radiat. Res. Appl. Sci. 11, 139–143 (2018)

    Article  Google Scholar 

  18. ATLAS simulation standard, 2003, Laser simulation encompassing molar fraction variation via DevEdit, https://www.silvaco.com/tech_lib_TCAD/simulationstandard/2003/feb/a3/a3.html.

  19. Silvaco, (2008). https://www.silvaco.com/products/vwf/atlas/laser/laser_br.html.

  20. S. Heidary, H. Alaibakhsh, M.A. Karami, A 3-D device –level simulation of charge separation from sidewall in vertical transfer gate pinned photodiode pixels for noise mitigation. IET Circuits Devices Syst. (2020). https://doi.org/10.1049/iet-cds.2019.0501

    Article  Google Scholar 

  21. P. Roura, M. López-de Miguel, A. Cornet, J.R. Morante, Determination of the direct band-gap energy of InAlAs matched to InP by photoluminescence excitation spectroscopy. J. Appl. Phys. 81, 6916–6920 (1997)

    Article  ADS  Google Scholar 

  22. J.W. Nicklas, J.W. Wilkins, Accurate ab initio predictions of III–V direct-indirect band gap crossovers. Appl. Phys. Lett. 97, 091902–091903 (2010)

    Article  ADS  Google Scholar 

  23. F. Wang, Y. Jia, S.F. Li, Q. Sun, First-principles calculation of the 6.1 Å family bowing parameters and band offsets. J. Appl. Phys. 105, 043101–043104 (2009)

    Article  ADS  Google Scholar 

  24. N. El-Houda Fares, N. Bouarissa, Energy, charge distribution and optical properties of AlxIn1-xSb. Infrared Phys. Technol. 71, 396–401 (2015)

    Article  Google Scholar 

  25. Q. Lu, Q. Zhuang, J. Hayton, M. Yin, A. Krier, Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers. Appl. Phys. Lett. 105, 031115–031124 (2014)

    Article  ADS  Google Scholar 

  26. A.D. Andreev, E.P. O’Reilly, A.R. Adams, T. Ashley, Theoretical performance and structure optimization of 35–45 m InGaSb/InGaAlSb multiple-quantum-well lasers. Appl. Phys. Lett. 78(2001), 2640–2642 (2001)

    Article  ADS  Google Scholar 

  27. H. Warlimont, W. Martienssen, Springer Handbook of Materials Data, 2nd edn. (American Society for Metals, Metals Park, 1979), p. 627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sattar Mirzakuchaki.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solgi, S., Mirzakuchaki, S. & Ghamsari, M.S. Design of InSb-based quantum-well laser with emission line at 5.6 μm. Eur. Phys. J. Plus 136, 378 (2021). https://doi.org/10.1140/epjp/s13360-021-01381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01381-4

Navigation