Log in

Investigation of surface-enhanced Raman spectroscopy on the substrates of telluride 2D material

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Since the discovery of graphene, there has been an upsurge in domestic and international research into two-dimensional materials, and the Raman enhancement effect of two-dimensional materials has also attracted much attention. In this experiment, copper phthalocyanine was used as a probe molecule to study the surface-enhanced Raman spectroscopy of WTe2 and NiTe2. The study found that the enhancement effect of WTe2 depends on the environment, and NiTe2 shows the relationship between the enhancement effect and the thickness of the material. At the same time, research shows that Raman spectroscopy, as a nondestructive analysis technology, is of great significance for studying the Raman enhancement effect of probe molecules, two-dimensional materials, and optoelectronic materials and devices.

Graphic abstract

The SERS enhancement effect of two-dimensional materials WTe2 and NiTe2 was studied, and the time dependence of WTe2 as a SERS substrate and the correlation between the thickness of NiTe2 was explored separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.L. Xu, Y. Gao, X.X. Han, B. Zhao, J. Agric. Food Chem. 65, 32 (2017)

    Google Scholar 

  2. C. Wang, C. Wang, X. Wang, K. Wang, Y. Zhu, Z. Rong, W. Wang, R. **ao, S. Wang, ACS Appl. Mater. Interfaces. 11, 21 (2019)

    Google Scholar 

  3. J.E. Park, N. Yonet-Tanyeri, E. Vander Ende, A.I. Henry, B.E. Perez White, M. Mrksich, R.P. Van Duyne, Nano Lett. 19, 10 (2019)

    Google Scholar 

  4. M. Fleischmann, P. Hendra, A. McQuillan, Chem. Phys. Lett. 26, 2 (1974)

    Article  Google Scholar 

  5. D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. Interfac. Electrochem. 84, 1 (1977)

    Article  Google Scholar 

  6. A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 4 (1998)

    Article  Google Scholar 

  7. A. Otto, T. Bornemann, Ü. Ertürk, I. Mrozek, C. Pettenkofer, Surf. Sci. 210, 3 (1989)

    Article  Google Scholar 

  8. R. Babar, M. Kabir, PhRvB 99, 11 (2019)

    Google Scholar 

  9. C.P. Herrero, R. Ramírez, PhRvB 101, 3 (2020)

    Google Scholar 

  10. H. Takenaka, S. Sandhoefner, A.A. Kovalev, E.Y. Tsymbal, PhRvB 100, 12 (2019)

    Google Scholar 

  11. F. Joucken, L. Henrard, J. Lagoute, Phys. Rev. Mater. 3, 11 (2019)

    Google Scholar 

  12. Y. Ren, P. Liu, B. Zhou, X. Zhou, G. Zhou, Phys. Rev. Appl. 12, 6 (2019)

    Google Scholar 

  13. R. Hu, G. Xu, Y. Yang, J.-M. Zhang, K. Zhong, Z. Huang, PhRvB 100, 8 (2019)

    Google Scholar 

  14. M. Alidoust, M. Willatzen, A.-P. Jauho, PhRvB. 99, 12 (2019)

    Google Scholar 

  15. S. Qiu, B. Zou, H. Sheng, W. Guo, J. Wang, Y. Zhao, W. Wang, R.K. Yuen, Y. Kan, Y. Hu, ACS Appl. Mater. Interfaces. 11, 14 (2019)

    Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 5696 (2004)

    Article  Google Scholar 

  17. B. Zhao, W. Dang, Y. Liu, B. Li, J. Li, J. Luo, Z. Zhang, R. Wu, H. Ma, G. Sun, J. Am. Chem. Soc. 140, 43 (2018)

    Google Scholar 

  18. S. Anantharaj, K. Karthick, S. Kundu, lnorg. Chem. 57, 6 (2018)

    Article  Google Scholar 

  19. L. Zhu, Q.-Y. Li, Y.-Y. Lv, S. Li, X.-Y. Zhu, Z.-Y. Jia, Y. Chen, J. Wen, S.-C. Li, Nano Lett. 18, 10 (2018)

    Google Scholar 

  20. Y. Wu, N.H. Jo, M. Ochi, L. Huang, D. Mou, S.L. Budko, P.C. Canfield, N. Trivedi, R. Arita, A. Kaminski, Phys. Rev. Lett. 115, 16 (2015)

    Google Scholar 

  21. M.N. Ali, J. **ong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, Nature 514, 7521 (2014)

    Article  Google Scholar 

  22. X.-C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, Nat. Commun. 6, 7804 (2015)

    Article  ADS  Google Scholar 

  23. D. Kang, Y. Zhou, W. Yi, C. Yang, J. Guo, Y. Shi, S. Zhang, Z. Wang, C. Zhang, S. Jiang, Nat. Commun. 6, 7805 (2015)

    Article  ADS  Google Scholar 

  24. Y. Zhao, H. Liu, J. Yan, W. An, J. Liu, X. Zhang, H. Wang, Y. Liu, H. Jiang, Q. Li, PhRvB 92, 4 (2015)

    Google Scholar 

  25. E. Yang, H. Ji, Y. Jung, J. Phys. Chem. C 119, 47 (2015)

    Google Scholar 

  26. Z. Wang, P. Guo, M. Liu, C. Guo, H. Liu, S. Wei, J. Zhang, X. Lu, ACS Appl. Energy Mater. 2, 5 (2019)

    Google Scholar 

  27. P.R. Somani, S.P. Somani, M. Umeno, Chem. Phys. Lett. 430, 1–3 (2006)

    Article  Google Scholar 

  28. Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, Adv. Mater. 26, 17 (2014)

    Google Scholar 

  29. J.D. Wood, S.A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V.K. Sangwan, X. Liu, L.J. Lauhon, T.J. Marks, M.C. Hersam, Nano Lett. 14, 12 (2014)

    Article  Google Scholar 

  30. Y. Jiang, J. Gao, L. Wang, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China. (Grant No. 11774244). This project is supported by the National Natural Science Foundation of China (No. 21872097) and Scientific Research Base Development Program of the Bei**g Municipal Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Wei, Y., Zhao, P. et al. Investigation of surface-enhanced Raman spectroscopy on the substrates of telluride 2D material. Eur. Phys. J. Plus 135, 671 (2020). https://doi.org/10.1140/epjp/s13360-020-00688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00688-y

Navigation