Log in

Thermodynamic and electrical properties of laser-shocked liquid deuterium

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Liquid deuterium at high pressure and temperature has been observed to undergo significant electronic structural changes. Reflectivity and temperature measurements of liquid deuterium up to around 70 GPa were obtained using a quartz standard. The observed specific heat of liquid deuterium approaches the Dulong-Petit limit above 1 eV. Discussions on specific heat indicate a molecular dissociation below 1 eV and fully dissociated above 1.5 eV. Also, the electrical conductivity of deuterium estimated from reflectivity reaches ~1.3 × 105 (Ω⋅m)-1, proving that deuterium in this condition is a conducting degenerate liquid metal and undergo an insulator-metal transition. The results from specific heat, carrier density and conductivity agreed well with each other, which might be a reinforcement of the insulator-metal transition and the molecular dissociation. In addition, a new correction method of reflectivity in temperature calculation was proposed to improve the accuracy of temperature results. A new “dynamic calibration” was introduced in this work to make the experiments simpler and more accurate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Drake, L. Davison, Y. Horie, High energy density physics (Springer, New York, 2006)

  2. C. Yamanaka, Nucl. Fusion 39, 825 (2002)

    Article  Google Scholar 

  3. J.R. Asay, M. Shahinpoor, L. Davison, High-pressure shock compression of solids (Springer, New York, 1993)

  4. Q. Cao, P. Wang, D. Huang, Chin. Phys. Lett. 32, 116 (2015)

    Google Scholar 

  5. L. Yang, Chin. Phys. B 25, 31 (2016)

    ADS  Google Scholar 

  6. P.M. Celliers, P. Loubeyre, J.H. Eggert, Phys. Rev. Lett. 104, 184503 (2010)

    Article  ADS  Google Scholar 

  7. M. Koenig, B. Faral, J.M. Boudenne, Phys. Rev. Lett. 74, 2260 (1995)

    Article  ADS  Google Scholar 

  8. J.D. Lindl, P. Amendt, R.L. Berger, Phys. Plasmas 11, 339 (2004)

    Article  ADS  Google Scholar 

  9. P. Loubeyre, S. Brygoo, J. Eggert, Phys. Rev. B: Condens. Matter 86, 119 (2012)

    Article  Google Scholar 

  10. W.J. Nellis, S.T. Weir, A.C. Mitchell, Phys. Rev. B 59, 3434 (1999)

    Article  ADS  Google Scholar 

  11. S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996)

    Article  ADS  Google Scholar 

  12. M. Zaghoo, A. Salamat, I.F. Silvera, Phys. Rev. B 93, 155128 (2016)

    Article  ADS  Google Scholar 

  13. V.E. Fortov, R.I. Ilkaev, V.A. Arinin, Phys. Rev. Lett. 99, 185001 (2007)

    Article  ADS  Google Scholar 

  14. V.E. Fortov, V.Y. Ternovoi, M.V. Zhernokletov, J. Exp. Theor. Phys. 97, 259 (2003)

    Article  ADS  Google Scholar 

  15. M.A. Mochalov, R.I. Il’Kaev, V.E. Fortov, J. Exp. Theor. Phys. 124, 505 (2017)

    Article  ADS  Google Scholar 

  16. M. Knudson, M. Desjarlais, A. Becker, Science 46, 1455 (2015)

    Article  ADS  Google Scholar 

  17. G.W. Collins, P.M. Celliers, L.B. Da Silva, Phys. Rev. Lett. 87, 165504 (2001)

    Article  ADS  Google Scholar 

  18. L.A. Collins, S.R. Bickham, J.D. Kress, Phys. Rev. B: Condens. Matter 63, 145 (2001)

    Google Scholar 

  19. G.W. Collins, L.B.D. Silva, P. Celliers, Science 281, 1178 (1998)

    Article  ADS  Google Scholar 

  20. W.J. Nellis, Phys. Rev. Lett. 89, 222 (2002)

    Article  Google Scholar 

  21. D.G. Hicks, T.R. Boehly, P.M. Celliers, Phys. Rev. B: Condens. Matter 79, 4112 (2009)

    Article  Google Scholar 

  22. L.B.D. Silva, P. Celliers, G.W. Collins, Phys. Rev. Lett. 78, 483 (1997)

    Article  ADS  Google Scholar 

  23. G.V. Boriskov, A.I. Bykov, R.I. Il’Kaev, Phys. Rev. B 71, 2104 (2005)

    Article  Google Scholar 

  24. M.D. Knudson, D.L. Hanson, J.E. Bailey, Phys. Rev. B 69, 1124 (2004)

    Article  Google Scholar 

  25. M. Ross, Phys. Rev. B 58, 669 (1998)

    Article  ADS  Google Scholar 

  26. N.C. Holmes, M. Ross, W.J. Nellis, Phys. Rev. B 52, 15835 (1996)

    Article  ADS  Google Scholar 

  27. T. Cui, G. Zou, K.B. Whaley, Chin. Phys. Lett. 38, 441 (1998)

    Google Scholar 

  28. J.E. Miller, T.R. Boehly, A. Melchior, Rev. Sci. Instrum. 78, 034903 (2007)

    Article  ADS  Google Scholar 

  29. Z. He, H. Zhou, X. Huang, Laser Part. Beams 28, 28042002 (2016)

    Google Scholar 

  30. J.H. Eggert, D.G. Hicks, P.M. Celliers, Nat. Phys. 6, 40 (2010)

    Article  Google Scholar 

  31. H. Shu, S. Fu, X. Huang, Phys. Plasmas 21, 2162 (2014)

    Article  Google Scholar 

  32. R.D. Goodwin, D.E. Diller, H.M. Roder, Cryogenics 2, 81 (1961)

    Article  ADS  Google Scholar 

  33. E.R. Grilly, J. Am. Chem. Soc. 73, 843 (1951)

    Article  Google Scholar 

  34. P.C. Souers, Hydrogen properties for fusion energy (University of California, Berkeley, 1986)

  35. G. Jiao, X. Huang, Z. Tie, Chin. J. Phys. Med. 64, 166401 (2015)

    Google Scholar 

  36. H. Shu, S. Fu, X. Huang, J. Appl. Phys. 103, 093304 (2008)

    Article  ADS  Google Scholar 

  37. T.A.B.Hall, D. Batani, D. Beretta, S. Bossi, B. Faral, M. Koenig, J. Krishnan, M. Mahdieh, Th. Lower, Phys. Rev. E 55, R6356 (1997)

    Article  ADS  Google Scholar 

  38. K. Falk, C.A. Mccoy, C.L. Fryer, Phys. Rev. E 90, 109 (2014)

    Article  Google Scholar 

  39. D.G. Hicks, T.R. Boehly, P.M. Celliers, Phys. Plasmas 12, 082702 (2005)

    Article  ADS  Google Scholar 

  40. D.G. Hicks, T.R. Boehly, J.H. Eggert, Phys. Rev. Lett. 97, 025502 (2006)

    Article  ADS  Google Scholar 

  41. G.W. Collins, D.K. Spaulding, R.S. Mcwilliams, Phys. Rev. Lett. 108, 652 (2012)

    Article  Google Scholar 

  42. H. Shu, S.Z. Fu, X.G. Huang, Eur. Phys. J. D 44, 367 (2007)

    Article  ADS  Google Scholar 

  43. V.D. Glukhodedov, S.I. Kirshanov, J. Exp. Theor. Phys. 89, 292 (1999)

    Article  ADS  Google Scholar 

  44. S.B. Kormer, Sov. Phys. Usp. 11, 229 (1968)

    Article  ADS  Google Scholar 

  45. X. Zhou, W.J. Nellis, J. Li, J. Appl. Phys. 118, 043524 (2015)

    Google Scholar 

  46. H. Shu, S.Z. Fu, X.G. Huang, Eur. Phys. J. D 66, 1 (2012)

    Article  ADS  Google Scholar 

  47. G.I. Kerley, Phys. Earth Planet. Inter. 6, 78 (1972)

    Article  ADS  Google Scholar 

  48. M.R. Zaghloul, Phys. Plasmas (1994–present) 22, 5184 (2015)

    Google Scholar 

  49. G.W. Collins, P.M. Celliers, L.B. da Silva, Phys. Rev. Lett. 87, 165504 (2001)

    Article  ADS  Google Scholar 

  50. J.E. Bailey, M.D. Knudson, A.L. Carlson, Phys. Rev. B 78, 4107 (2008)

    Article  Google Scholar 

  51. L. Caillabet, S. Mazevet, P. Loubeyre, Phys. Rev. B 83, 328 (2011)

    Article  Google Scholar 

  52. D.K. Spaulding, Laser-driven shock compression studies of planetary compositions (Graduate Division of the University of California, Berkeley, 2010)

  53. P.M. Celliers, G.W. Collins, L.B.D. Silva, Phys. Rev. Lett. 84, 5564 (2000)

    Article  ADS  Google Scholar 

  54. P.M. Celliers, G.W. Collins, D.G. Hicks, Phys. Plasmas 11, L41 (2004)

    Article  Google Scholar 

  55. D.G. Hicks, P.M. Celliers, G.W. Collins, Phys. Rev. Lett. 91, 035502 (2003)

    Article  ADS  Google Scholar 

  56. G. Huser, V. Recoules, N. Ozaki, Phys. Rev. E 92, 063108 (2015)

    Article  ADS  Google Scholar 

  57. Y.B. Zeldovich, Y.P. Raizer, Physics of shock waves and high temperature hydrodynamic phenomena (Academic Press, New York, 1966)

  58. H. Reinholz, Y. Zaporoghets, V. Mintsev, Phys. Rev. E 68, 036403 (2003)

    Article  ADS  Google Scholar 

  59. D.R. Hardesty, J. Appl. Phys. 47, 1994 (1976)

    Article  ADS  Google Scholar 

  60. T. Sano, N. Ozaki, T. Sakaiya, Phys. Rev. B 83, 3002 (2011)

    Google Scholar 

  61. A.F. Ioffe, A.R. Regel, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  62. W.B. Hubbard, M. Lampe, Astrophys. J. Suppl. 18, 297 (1968)

    Article  ADS  Google Scholar 

  63. L.A. Collins, J.D. Kress, D.E. Hanson, Phys. Rev. B 85, 2286 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **uguang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Jia, G., Zhang, F. et al. Thermodynamic and electrical properties of laser-shocked liquid deuterium. Eur. Phys. J. D 72, 3 (2018). https://doi.org/10.1140/epjd/e2017-80330-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80330-4

Keywords

Navigation