Log in

Enhancement of dark matter relic density from late time dark matter conversions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We demonstrate that if the dark matter (DM) in the Universe contains multiple components, the possible interactions between the DM components may convert the heavier DM components into lighter ones. It is then possible that the lightest DM component with an annihilation cross section significantly larger than that of the typical weakly interacting massive particle (WIMP) may lead to a relic density in agreement with cosmological observations, due to an enhancement of number density from the DM conversion process at late time after the thermal decoupling. This may provide an alternative source of boost factor relevant to the positron and electron excesses reported by the recent DM indirect search experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Adriani et al. (PAMELA Collaboration), An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009). ar**v:0810.4995

    Article  ADS  Google Scholar 

  2. J. Chang et al., An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456, 362–365 (2008)

    Article  ADS  Google Scholar 

  3. A.A. Abdo et al. (The Fermi LAT Collaboration), Measurement of the Cosmic Ray e+ plus e− spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. Phys. Rev. Lett. 102, 181101 (2009). ar**v:0905.0025

    Article  ADS  Google Scholar 

  4. F. Aharonian et al. (H.E.S.S. Collaboration), Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. Astron. Astrophys. 508, 561 (2009). ar**v:0905.0105

    Article  ADS  Google Scholar 

  5. D. Hooper, P. Blasi, P.D. Serpico, Pulsars as the sources of high energy cosmic ray positrons. J. Cosmol. Astropart. Phys. 0901, 025 (2009). ar**v:0810.1527

    Article  ADS  Google Scholar 

  6. H. Yuksel, M.D. Kistler, T. Stanev, TeV Gamma rays from Geminga and the origin of the GeV positron excess. Phys. Rev. Lett. 103, 051101 (2009). ar**v:0810.2784

    Article  ADS  Google Scholar 

  7. S. Profumo, Dissecting Pamela (and ATIC) with Occam’s Razor: existing, well-known Pulsars naturally account for the ‘anomalous’ cosmic-ray electron and positron data. ar**v:0812.4457

  8. I. Cholis, L. Goodenough, D. Hooper, M. Simet, N. Weiner, High energy positrons from annihilating dark matter. Phys. Rev. D 80, 123511 (2009). ar**v:0809.1683

    ADS  Google Scholar 

  9. L. Bergstrom, J. Edsjo, G. Zaharijas, Dark matter interpretation of recent electron and positron data. Phys. Rev. Lett. 103, 031103 (2009). ar**v:0905.0333

    Article  ADS  Google Scholar 

  10. V. Springel et al., A blueprint for detecting supersymmetric dark matter in the Galactic halo. ar**v:0809.0894

  11. J. Diemand et al., Clumps and streams in the local dark matter distribution. Nature 454, 735–738 (2008). ar**v:0805.1244

    Article  ADS  Google Scholar 

  12. A. Sommerfeld, Ann. Phys. 403, 257 (1931)

    Article  Google Scholar 

  13. J. Hisano, S. Matsumoto, M.M. Nojiri, Unitarity and higher-order corrections in neutralino dark matter annihilation into two photons. Phys. Rev. D 67, 075014 (2003). hep-ph/0212022

    ADS  Google Scholar 

  14. J. Hisano, S. Matsumoto, M.M. Nojiri, Explosive dark matter annihilation. Phys. Rev. Lett. 92, 031303 (2004). hep-ph/0307216

    Article  ADS  Google Scholar 

  15. M. Cirelli, A. Strumia, M. Tamburini, Cosmology and astrophysics of minimal dark matter. Nucl. Phys. B 787, 152–175 (2007). ar**v:0706.4071

    Article  ADS  Google Scholar 

  16. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A theory of dark matter. Phys. Rev. D 79, 015014 (2009). ar**v:0810.0713

    ADS  Google Scholar 

  17. M. Pospelov, A. Ritz, Astrophysical signatures of secluded dark matter. Phys. Lett. B 671, 391–397 (2009). ar**v:0810.1502

    ADS  Google Scholar 

  18. J.D. March-Russell, S.M. West, WIMPonium and boost factors for indirect dark matter detection. Phys. Lett. B 676, 133–139 (2009). ar**v:0812.0559

    ADS  Google Scholar 

  19. R. Iengo, Sommerfeld enhancement: general results from field theory diagrams. J. High Energy Phys. 05, 024 (2009). ar**v:0902.0688

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Cassel, Sommerfeld factor for arbitrary partial wave processes. J. Phys. G 37, 105009 (2010). ar**v:0903.5307

    Article  ADS  Google Scholar 

  21. D. Feldman, Z. Liu, P. Nath, PAMELA positron excess as a signal from the hidden sector. Phys. Rev. D 79, 063509 (2009). ar**v:0810.5762

    ADS  Google Scholar 

  22. M. Ibe, H. Murayama, T.T. Yanagida, Breit–Wigner enhancement of dark matter annihilation. Phys. Rev. D 79, 095009 (2009). ar**v:0812.0072

    ADS  Google Scholar 

  23. W.-L. Guo, Y.-L. Wu, Enhancement of dark matter annihilation via Breit–Wigner resonance. Phys. Rev. D 79, 055012 (2009). ar**v:0901.1450

    ADS  Google Scholar 

  24. M. Fairbairn, J. Zupan, Two component dark matter. J. Cosmol. Astropart. Phys. 0907, 001 (2009). ar**v:0810.4147

    Article  ADS  Google Scholar 

  25. D. Feldman, Z. Liu, P. Nath, B.D. Nelson, Explaining PAMELA and WMAP data through coannihilations in extended SUGRA with collider implications. Phys. Rev. D 80, 075001 (2009). ar**v:0907.5392

    ADS  Google Scholar 

  26. C. Boehm, P. Fayet, J. Silk, Light and heavy dark matter particles. Phys. Rev. D 69, 101302 (2004). hep-ph/0311143

    ADS  Google Scholar 

  27. T. Hur, H.-S. Lee, S. Nasri, A supersymmetric U(1)-prime model with multiple dark matters. Phys. Rev. D 77, 015008 (2008). ar**v:0710.2653

    ADS  Google Scholar 

  28. M. Adibzadeh, P.Q. Hung, The relic density of shadow dark matter candidates. Nucl. Phys. B 804, 223–249 (2008). ar**v:0801.4895

    Article  ADS  MATH  Google Scholar 

  29. J.L. Feng, J. Kumar, The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions. Phys. Rev. Lett. 101, 231301 (2008). ar**v:0803.4196

    Article  ADS  Google Scholar 

  30. K.M. Zurek, Multi-component dark matter. Phys. Rev. D 79, 115002 (2009). ar**v:0811.4429

    ADS  Google Scholar 

  31. B. Batell, M. Pospelov, A. Ritz, Direct detection of multi-component secluded WIMPs. Phys. Rev. D 79, 115019 (2009). ar**v:0903.3396

    ADS  Google Scholar 

  32. S. Profumo, K. Sigurdson, L. Ubaldi, Can we discover multi-component WIMP dark matter? J. Cosmol. Astropart. Phys. 0912, 016 (2009). ar**v:0907.4374

    Article  ADS  Google Scholar 

  33. H. Zhang, C.S. Li, Q.-H. Cao, Z. Li, A dark matter model with non-Abelian gauge symmetry. Phys. Rev. D 82, 075003 (2010). ar**v:0910.2831

    ADS  Google Scholar 

  34. X. Gao, Z. Kang, T. Li, The supersymmetric standard models with decay and stable dark matters. Eur. Phys. J. C 69, 467–480 (2010). ar**v:1001.3278

    Article  ADS  Google Scholar 

  35. D. Feldman, Z. Liu, P. Nath, G. Peim, Multicomponent dark matter in supersymmetric hidden sector extensions. Phys. Rev. D 81, 095017 (2010). ar**v:1004.0649

    ADS  Google Scholar 

  36. I. Gogoladze, N. Okada, Q. Shafi, Type II seesaw and the PAMELA/ATIC signals. Phys. Lett. B 679, 237–241 (2009). ar**v:0904.2201

    ADS  Google Scholar 

  37. W.-L. Guo, Y.-L. Wu, Y.-F. Zhou, Exploration of decaying dark matter in a left–right symmetric model. Phys. Rev. D 81, 075014 (2010). ar**v:1001.0307

    Article  ADS  Google Scholar 

  38. J. Zavala, M. Vogelsberger, S.D.M. White, Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement. Phys. Rev. D 81, 083502 (2010). ar**v:0910.5221

    ADS  Google Scholar 

  39. S. Hannestad, T. Tram, Sommerfeld enhancement of DM annihilation: resonance structure, freeze-out and CMB spectral bound. J. Cosmol. Astropart. Phys. 1101, 016 (2011). ar**v:1008.1511

    Article  ADS  Google Scholar 

  40. D.P. Finkbeiner, L. Goodenough, T.R. Slatyer, M. Vogelsberger, N. Weiner, Consistent scenarios for cosmic-ray excesses from Sommerfeld-enhanced dark matter annihilation. ar**v:1011.3082

  41. M. Lattanzi, J.I. Silk, Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement? Phys. Rev. D 79, 083523 (2009). ar**v:0812.0360

    ADS  Google Scholar 

  42. M. Kamionkowski, S. Profumo, Early annihilation and diffuse backgrounds in models of weakly interacting massive particles in which the cross section for pair annihilation is enhanced by 1/v. Phys. Rev. Lett. 101, 261301 (2008). ar**v:0810.3233

    Article  ADS  Google Scholar 

  43. J.L. Feng, M. Kaplinghat, H. Tu, H.-B. Yu, Hidden charged dark matter. J. Cosmol. Astropart. Phys. 0907, 004 (2009). ar**v:0905.3039

    Article  ADS  Google Scholar 

  44. J.L. Feng, M. Kaplinghat, H.-B. Yu, Halo shape and relic density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses. Phys. Rev. Lett. 104, 151301 (2010). ar**v:0911.0422

    Article  ADS  Google Scholar 

  45. J.L. Feng, M. Kaplinghat, H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter. Phys. Rev. D 82, 083525 (2010). ar**v:1005.4678

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Peng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, ZP., Wu, YL. & Zhou, YF. Enhancement of dark matter relic density from late time dark matter conversions. Eur. Phys. J. C 71, 1749 (2011). https://doi.org/10.1140/epjc/s10052-011-1749-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1749-4

Keywords

Navigation