Log in

Unquenched—a memoir on non-equilibrium dynamics of quantum many-body systems: honoring Amit Dutta

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This short review explores the physics journey of Professor Amit Dutta, illuminating his collaborative contributions with students and peers. We mainly focus on standard approaches to understanding non-equilibrium quantum dynamics and ground-state criticality using quantum informatic measures like ground-state fidelity, the Loschmidt echo and/or the decoherence factor. Using Floquet theory as a tool, we also discuss the dynamics of hard-core bosonic chain, shedding light on the phenomenon of dynamical localization and different analytically approachable limits of Floquet theory. The review further extends to probe the physics of topological phase transitions in driven/quenched systems, where we mainly focus on the non-equilibrium response of topological systems and topological state preparation. Finally, we also discuss late-time quantum dynamics leading to the thermalization of open and closed systems, where we review contemporary approaches to the applicability of thermodynamic principles in microscopic quantum systems and the macroscopic emergence of statistical mechanics in driven/quenched ergodic systems. Throughout this memoir, Professor Amit Dutta’s important scientific contributions are mentioned for their impact on advancing our understanding of quantum dynamics and statistical mechanics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability statement

Data will be made available on reasonable request.

References

  1. A. Dutta, B.K. Chakrabarti, R.B. Stinchcombe, Phase transitions in the random field ising model in the presence of a transverse field. J. Phys. A: Math. Gen. 29, 5285 (1996). https://doi.org/10.1088/0305-4470/29/17/007

    Article  ADS  Google Scholar 

  2. A. Dutta, J.K. Bhattacharjee, B.K. Chakrabarti, Phase transition in quantum rotors in regular frustrations. Indian J. Phys. A 71, 343 (1997)

    Google Scholar 

  3. A. Dutta, B.K. Chakrabarti, J.K. Bhattacharjee, Quantum lifshitz point: \({\epsilon }\) expansion and the spherical limit. Phys. Rev. B 55, 5619 (1997). https://doi.org/10.1103/PhysRevB.55.5619

    Article  ADS  Google Scholar 

  4. A. Dutta, J.K. Bhattacharjee, B.K. Chakrabarti, Quantum rotors with regular frustration and the quantum lifshitz point. Eur. Phys. J. B. 3, 97 (1998). https://doi.org/10.1007/s100510050287

    Article  ADS  Google Scholar 

  5. K. Ghosh, A. Dutta, J.K. Bhattacharjee, Field theoretical calculation of the specific heat exponent for a classical n-vector model in a random external field. Eur. Phys. J. B. 4, 219 (1998). https://doi.org/10.1007/s100510050372

    Article  ADS  Google Scholar 

  6. A. Dutta, B.K. Chakrabarti, Quantum phase transition and critical phenomena. Indian J. Phys. B 72, 301 (1998)

    Google Scholar 

  7. A. Dutta, J.K. Bhattacharjee, Quantum rotors in the presence of a random field. Phys. Rev. B 58, 6378 (1998). https://doi.org/10.1103/PhysRevB.58.6378

    Article  ADS  Google Scholar 

  8. A. Dutta, R.B. Stinchcombe, Correlated random-field systems: Dissipative dynamics and phenomenological scaling. Phys. Rev. B 61, 354 (2000). https://doi.org/10.1103/PhysRevB.61.354

    Article  ADS  Google Scholar 

  9. A. Dutta, P. Sen, Quantum ising phases and transitions in transverse ising models (Springer, New York, 1996)

    Google Scholar 

  10. A. Dutta, G. Aeppli, B.K. Chakrabarti, U. Divakaran, T.F. Rosenbaum, D. Sen, Quantum phase transitions in transverse field spin models: from statistical physics to quantum information (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  11. U. Divakaran, A. Dutta, D. Sen, Landau-zener problem with waiting at the minimum gap and related quench dynamics of a many-body system. Phys. Rev. B 81, 054306 (2010). https://doi.org/10.1103/PhysRevB.81.054306

    Article  ADS  Google Scholar 

  12. A. Dutta, R.R.P. Singh, U. Divakaran, Quenching through dirac and semi-dirac points in optical lattices: Kibble-zurek scaling for anisotropic quantum critical systems. Europhys. Lett. 89, 67001 (2010). https://doi.org/10.1209/0295-5075/89/67001

    Article  ADS  Google Scholar 

  13. P. Zanardi, N. Paunković, Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006). https://doi.org/10.1103/PhysRevE.74.031123

    Article  ADS  MathSciNet  Google Scholar 

  14. S.-J. Gu, Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. 24, 4371 (2010). https://doi.org/10.1142/S0217979210056335

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9780511973765

    Book  Google Scholar 

  16. H.-Q. Zhou, P.J. Barjaktarevič, Fidelity and quantum phase transitions. J. Phys. A: Math. Theor. 41, 412001 (2008). https://doi.org/10.1088/1751-8113/41/41/412001

    Article  MathSciNet  Google Scholar 

  17. P.W. Anderson, Infrared catastrophe in fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049 (1967). https://doi.org/10.1103/PhysRevLett.18.1049

    Article  ADS  Google Scholar 

  18. V. Mukherjee, A. Polkovnikov, A. Dutta, Oscillating fidelity susceptibility near a quantum multicritical point. Phys. Rev. B 83, 075118 (2011). https://doi.org/10.1103/PhysRevB.83.075118

    Article  ADS  Google Scholar 

  19. U. Divakaran, V. Mukherjee, A. Dutta, D. Sen, Defect production due to quenching through a multicritical point and along a gapless line, In Quantum Quenching, Annealing and Computation, edited by A. K. Chandra, A. Das, and B. K. Chakrabarti (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010) pp. 57–73 https://doi.org/10.1007/978-3-642-11470-0_3

  20. V. Mukherjee, A. Dutta, D. Sen, Quantum fidelity for one-dimensional dirac fermions and two-dimensional kitaev model in the thermodynamic limit. Phys. Rev. B 85, 024301 (2012). https://doi.org/10.1103/PhysRevB.85.024301

    Article  ADS  Google Scholar 

  21. A.A. Patel, S. Sharma, A. Dutta, Role of marginality in quantum fidelity and loschmidt echo: Dirac points in 2-d. Europhys. Lett. 102, 46001 (2013). https://doi.org/10.1209/0295-5075/102/46001

    Article  ADS  Google Scholar 

  22. A. Peres, Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610 (1984). https://doi.org/10.1103/PhysRevA.30.1610

    Article  ADS  MathSciNet  Google Scholar 

  23. W.H. Zurek, J.P. Paz, Decoherence, chaos, and the second law. Phys. Rev. Lett. 72, 2508 (1994). https://doi.org/10.1103/PhysRevLett.72.2508

    Article  ADS  Google Scholar 

  24. R.A. Jalabert, H.M. Pastawski, Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490 (2001). https://doi.org/10.1103/PhysRevLett.86.2490

    Article  ADS  Google Scholar 

  25. Z.P. Karkuszewski, C. Jarzynski, W.H. Zurek, Quantum chaotic environments, the butterfly effect, and decoherence. Phys. Rev. Lett. 89, 170405 (2002). https://doi.org/10.1103/PhysRevLett.89.170405

    Article  ADS  Google Scholar 

  26. W.H. Zurek, U. Dorner, P. Zoller, Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005). https://doi.org/10.1103/PhysRevLett.95.105701

    Article  ADS  Google Scholar 

  27. L. Campos Venuti, N.T. Jacobson, S. Santra, P. Zanardi, Exact infinite-time statistics of the loschmidt echo for a quantum quench. Phys. Rev. Lett. 107, 010403 (2011). https://doi.org/10.1103/PhysRevLett.107.010403

    Article  ADS  Google Scholar 

  28. U. Bhattacharya, S. Dasgupta, A. Dutta, Exploring chaos in the dicke model using ground-state fidelity and loschmidt echo. Phys. Rev. E 90, 022920 (2014). https://doi.org/10.1103/PhysRevE.90.022920

    Article  ADS  Google Scholar 

  29. M. Heyl, A. Polkovnikov, S. Kehrein, Dynamical quantum phase transitions in the transverse-field ising model. Phys. Rev. Lett. 110, 135704 (2013). https://doi.org/10.1103/PhysRevLett.110.135704

    Article  ADS  Google Scholar 

  30. J.C. Budich, M. Heyl, Dynamical topological order parameters far from equilibrium. Phys. Rev. B 93, 085416 (2016). https://doi.org/10.1103/PhysRevB.93.085416

    Article  ADS  Google Scholar 

  31. C. Karrasch, D. Schuricht, Dynamical phase transitions after quenches in nonintegrable models. Phys. Rev. B 87, 195104 (2013). https://doi.org/10.1103/PhysRevB.87.195104

    Article  ADS  Google Scholar 

  32. S. Sharma, S. Suzuki, A. Dutta, Quenches and dynamical phase transitions in a nonintegrable quantum ising model. Phys. Rev. B 92, 104306 (2015). https://doi.org/10.1103/PhysRevB.92.104306

    Article  ADS  Google Scholar 

  33. A. Patel, S. Sharma, A. Dutta, Quench dynamics of edge states in 2-d topological insulator ribbons. Eur. Phys. J. B 86, 367 (2013). https://doi.org/10.1140/epjb/e2013-40657-2

    Article  ADS  Google Scholar 

  34. S. Sharma, U. Divakaran, A. Polkovnikov, A. Dutta, Slow quenches in a quantum ising chain: Dynamical phase transitions and topology. Phys. Rev. B 93, 144306 (2016). https://doi.org/10.1103/PhysRevB.93.144306

    Article  ADS  Google Scholar 

  35. S. Sharma, S. Suzuki, A. Dutta, Quenches and dynamical phase transitions in a nonintegrable quantum ising model. Phys. Rev. B 92, 104306 (2015). https://doi.org/10.1103/PhysRevB.92.104306

    Article  ADS  Google Scholar 

  36. S. Bhattacharjee, A. Dutta, Dynamical quantum phase transitions in extended transverse ising models. Phys. Rev. B 97, 134306 (2018). https://doi.org/10.1103/PhysRevB.97.134306

    Article  ADS  Google Scholar 

  37. U. Bhattacharya, A. Dutta, Interconnections between equilibrium topology and dynamical quantum phase transitions in a linearly ramped haldane model. Phys. Rev. B 95, 184307 (2017). https://doi.org/10.1103/PhysRevB.95.184307

    Article  ADS  Google Scholar 

  38. U. Bhattacharya, A. Dutta, Emergent topology and dynamical quantum phase transitions in two-dimensional closed quantum systems. Phys. Rev. B 96, 014302 (2017). https://doi.org/10.1103/PhysRevB.96.014302

    Article  ADS  Google Scholar 

  39. U. Bhattacharya, S. Bandyopadhyay, A. Dutta, Mixed state dynamical quantum phase transitions. Phys. Rev. B 96, 180303 (2017). https://doi.org/10.1103/PhysRevB.96.180303

    Article  ADS  Google Scholar 

  40. M. Heyl, J.C. Budich, Dynamical topological quantum phase transitions for mixed states. Phys. Rev. B 96, 180304 (2017). https://doi.org/10.1103/PhysRevB.96.180304

    Article  ADS  Google Scholar 

  41. S. Bandyopadhyay, S. Laha, U. Bhattacharya, A. Dutta, Exploring the possibilities of dynamical quantum phase transitions in the presence of a Markovian bath. Sci. Rep. 8, 5 (2018). https://doi.org/10.1038/s41598-018-30377-x

    Article  Google Scholar 

  42. J.C. Halimeh, D. Trapin, M. Van Damme, M. Heyl, Local measures of dynamical quantum phase transitions. Phys. Rev. B 104, 075130 (2021). https://doi.org/10.1103/PhysRevB.104.075130

    Article  ADS  Google Scholar 

  43. S. Bandyopadhyay, A. Polkovnikov, A. Dutta, Observing dynamical quantum phase transitions through quasilocal string operators. Phys. Rev. Lett. 126, 200602 (2021). https://doi.org/10.1103/PhysRevLett.126.200602

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Sharma, A. Russomanno, G.E. Santoro, A. Dutta, Loschmidt echo and dynamical fidelity in periodically driven quantum systems. Europhys. Lett. 106, 67003 (2014). https://doi.org/10.1209/0295-5075/106/67003

    Article  ADS  Google Scholar 

  45. U. Bhattacharya, S. Dasgupta, A. Dutta, Exploring chaos in the dicke model using ground-state fidelity and loschmidt echo. Phys. Rev. E 90, 022920 (2014). https://doi.org/10.1103/PhysRevE.90.022920

    Article  ADS  Google Scholar 

  46. S. Bandyopadhyay, A. Polkovnikov, A. Dutta, Late-time critical behavior of local stringlike observables under quantum quenches. Phys. Rev. B 107, 064105 (2023). https://doi.org/10.1103/PhysRevB.107.064105

    Article  ADS  Google Scholar 

  47. A. Haldar, K. Mallayya, M. Heyl, F. Pollmann, M. Rigol, A. Das, Signatures of quantum phase transitions after quenches in quantum chaotic one-dimensional systems. Phys. Rev. X 11, 031062 (2021). https://doi.org/10.1103/PhysRevX.11.031062

    Article  Google Scholar 

  48. A. Sen, S. Nandy, K. Sengupta, Entanglement generation in periodically driven integrable systems: Dynamical phase transitions and steady state. Phys. Rev. B 94, 214301 (2016). https://doi.org/10.1103/PhysRevB.94.214301

    Article  ADS  Google Scholar 

  49. S. Nandy, K. Sengupta, A. Sen, Periodically driven integrable systems with long-range pair potentials. J. Phys. A: Math. Theor. 51, 334002 (2018). https://doi.org/10.1088/1751-8121/aaced6

    Article  MathSciNet  Google Scholar 

  50. A.A. Makki, S. Bandyopadhyay, S. Maity, A. Dutta, Dynamical crossover behavior in the relaxation of quenched quantum many-body systems. Phys. Rev. B 105, 054301 (2022). https://doi.org/10.1103/PhysRevB.105.054301

    Article  ADS  Google Scholar 

  51. T. Nag, U. Divakaran, A. Dutta, Scaling of the decoherence factor of a qubit coupled to a spin chain driven across quantum critical points. Phys. Rev. B 86, 020401 (2012). https://doi.org/10.1103/PhysRevB.86.020401

    Article  ADS  Google Scholar 

  52. S. Suzuki, T. Nag, A. Dutta, Dynamics of decoherence: Universal scaling of the decoherence factor. Phys. Rev. A 93, 012112 (2016). https://doi.org/10.1103/PhysRevA.93.012112

    Article  ADS  Google Scholar 

  53. J. Schliemann, A.V. Khaetskii, D. Loss, Spin decay and quantum parallelism. Phys. Rev. B 66, 245303 (2002). https://doi.org/10.1103/PhysRevB.66.245303

    Article  ADS  Google Scholar 

  54. F.M. Cucchietti, J.P. Paz, W.H. Zurek, Decoherence from spin environments. Phys. Rev. A 72, 052113 (2005). https://doi.org/10.1103/PhysRevA.72.052113

    Article  ADS  Google Scholar 

  55. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Decay of loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96, 140604 (2006). https://doi.org/10.1103/PhysRevLett.96.140604

    Article  ADS  Google Scholar 

  56. B. Damski, H.T. Quan, W.H. Zurek, Critical dynamics of decoherence. Phys. Rev. A 83, 062104 (2011). https://doi.org/10.1103/PhysRevA.83.062104

    Article  ADS  Google Scholar 

  57. T. Nag, S. Roy, A. Dutta, D. Sen, Dynamical localization in a chain of hard core bosons under periodic driving. Phys. Rev. B 89, 165425 (2014). https://doi.org/10.1103/PhysRevB.89.165425

    Article  ADS  Google Scholar 

  58. T. Nag, D. Sen, A. Dutta, Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential. Phys. Rev. A 91, 063607 (2015). https://doi.org/10.1103/PhysRevA.91.063607

    Article  ADS  Google Scholar 

  59. T. Oka, H. Aoki, Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406 (2009). https://doi.org/10.1103/PhysRevB.79.081406

    Article  ADS  Google Scholar 

  60. L. D’Alessio, A. Polkovnikov, Many-body energy localization transition in periodically driven systems. Ann. Phys. 333, 19 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  61. J.H. Shirley, Solution of the schrödinger equation with a hamiltonian periodic in time. Phys. Rev. 138, B979 (1965). https://doi.org/10.1103/PhysRev.138.B979

    Article  ADS  Google Scholar 

  62. M. Grifoni, P. Hänggi, Driven quantum tunneling. Phys. Rep. 304, 229 (1998). https://doi.org/10.1016/S0370-1573(98)00022-2

    Article  ADS  MathSciNet  Google Scholar 

  63. M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  ADS  Google Scholar 

  64. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011). https://doi.org/10.1103/RevModPhys.83.1057

    Article  ADS  Google Scholar 

  65. S. Bandyopadhyay, S. Bhattacharjee, D. Sen, Driven quantum many-body systems and out-of-equilibrium topology. J. Phys.: Condens. Matter 33, 393001 (2021). https://doi.org/10.1088/1361-648X/ac1151

    Article  Google Scholar 

  66. M. Thakurathi, A.A. Patel, D. Sen, A. Dutta, Floquet generation of majorana end modes and topological invariants. Phys. Rev. B 88, 155133 (2013). https://doi.org/10.1103/PhysRevB.88.155133

    Article  ADS  Google Scholar 

  67. U. Bhattacharya, J. Hutchinson, A. Dutta, Quenching in chern insulators with satellite dirac points: The fate of edge states. Phys. Rev. B 95, 144304 (2017). https://doi.org/10.1103/PhysRevB.95.144304

    Article  ADS  Google Scholar 

  68. M.D. Caio, N.R. Cooper, M.J. Bhaseen, Quantum quenches in chern insulators. Phys. Rev. Lett. 115, 236403 (2015). https://doi.org/10.1103/PhysRevLett.115.236403

    Article  ADS  Google Scholar 

  69. L. D’Alessio, M. Rigol, Dynamical preparation of floquet chern insulators. Nat. Commun. 6, 8336 (2015). https://doi.org/10.1038/ncomms9336

    Article  ADS  Google Scholar 

  70. S. Mardanya, U. Bhattacharya, A. Agarwal, A. Dutta, Dynamics of edge currents in a linearly quenched haldane model. Phys. Rev. B 97, 115443 (2018). https://doi.org/10.1103/PhysRevB.97.115443

    Article  ADS  Google Scholar 

  71. S. Maity, U. Bhattacharya, A. Dutta, One-dimensional quantum many body systems with long-range interactions. J. Phys. A: Math. Theor. 53, 013001 (2019). https://doi.org/10.1088/1751-8121/ab5634

    Article  ADS  MathSciNet  Google Scholar 

  72. U. Bhattacharya, S. Maity, A. Dutta, D. Sen, Critical phase boundaries of static and periodically kicked long-range kitaev chain. J. Phys.: Condens. Matter 31, 174003 (2019). https://doi.org/10.1088/1361-648x/ab03b9

    Article  ADS  Google Scholar 

  73. U. Bhattacharya, A. Dutta, Topological footprints of the kitaev chain with long-range superconducting pairings at a finite temperature. Phys. Rev. B 97, 214505 (2018). https://doi.org/10.1103/PhysRevB.97.214505

    Article  ADS  Google Scholar 

  74. S. Bandyopadhyay, U. Bhattacharya, A. Dutta, Temporal variation in the winding number due to dynamical symmetry breaking and associated transport in a driven su-schrieffer-heeger chain. Phys. Rev. B 100, 054305 (2019). https://doi.org/10.1103/PhysRevB.100.054305

    Article  ADS  Google Scholar 

  75. S. Bandyopadhyay, A. Dutta, Dynamical preparation of a topological state and out-of-equilibrium bulk-boundary correspondence in a su-schrieffer-heeger chain under periodic driving. Phys. Rev. B 100, 144302 (2019). https://doi.org/10.1103/PhysRevB.100.144302

    Article  ADS  Google Scholar 

  76. S. Bandyopadhyay, S. Bhattacharjee, A. Dutta, Dynamical generation of majorana edge correlations in a ramped kitaev chain coupled to nonthermal dissipative channels. Phys. Rev. B 101, 104307 (2020). https://doi.org/10.1103/PhysRevB.101.104307

    Article  ADS  Google Scholar 

  77. S. Bandyopadhyay, A. Dutta, Unitary preparation of many-body chern insulators: Adiabatic bulk-boundary correspondence. Phys. Rev. B 102, 094301 (2020). https://doi.org/10.1103/PhysRevB.102.094301

    Article  ADS  Google Scholar 

  78. S. Bandyopadhyay, A. Dutta, Dissipative preparation of many-body floquet chern insulators. Phys. Rev. B 102, 184302 (2020). https://doi.org/10.1103/PhysRevB.102.184302

    Article  ADS  Google Scholar 

  79. C.-E. Bardyn, L. Wawer, A. Altland, M. Fleischhauer, S. Diehl, Probing the topology of density matrices. Phys. Rev. X 8, 011035 (2018). https://doi.org/10.1103/PhysRevX.8.011035

    Article  Google Scholar 

  80. S. Bhattacharjee, S. Bandyopadhyay, D. Sen, A. Dutta, Bilayer haldane system: Topological characterization and adiabatic passages connecting chern phases. Phys. Rev. B 103, 224304 (2021). https://doi.org/10.1103/PhysRevB.103.224304

    Article  ADS  Google Scholar 

  81. A.Y. Kitaev, Unpaired majorana fermions in quantum wires. Phys. Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  82. A. Rajak, A. Dutta, Survival probability of an edge majorana in a one-dimensional p-wave superconducting chain under sudden quenching of parameters. Phys. Rev. E 89, 042125 (2014)

    Article  ADS  Google Scholar 

  83. A. Rajak, T. Nag, A. Dutta, Possibility of adiabatic transport of a majorana edge state through an extended gapless region. Phys. Rev. E 90, 042107 (2014)

    Article  ADS  Google Scholar 

  84. A. Bermudez, L. Amico, M. Martin-Delgado, Dynamical delocalization of majorana edge states by swee** across a quantum critical point. New J. Phys. 12, 055014 (2010)

    Article  ADS  Google Scholar 

  85. S. Sharma, A. Dutta, One- and two-dimensional quantum models: Quenches and the scaling of irreversible entropy. Phys. Rev. E 92, 022108 (2015). https://doi.org/10.1103/PhysRevE.92.022108

    Article  ADS  MathSciNet  Google Scholar 

  86. A. Russomanno, S. Sharma, A. Dutta, G.E. Santoro, Asymptotic work statistics of periodically driven ising chains. J. Stat. Mech: Theory Exp. 2015, P08030 (2015). https://doi.org/10.1088/1742-5468/2015/08/P08030

    Article  MathSciNet  Google Scholar 

  87. M. Campisi, P. Hänggi, P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 83, 771 (2011). https://doi.org/10.1103/RevModPhys.83.771

    Article  ADS  Google Scholar 

  88. P. Talkner, E. Lutz, P. Hänggi, Fluctuation theorems: Work is not an observable. Phys. Rev. E 75, 050102 (2007). https://doi.org/10.1103/PhysRevE.75.050102

    Article  ADS  Google Scholar 

  89. A. Gambassi, P. Calabrese, Quantum quenches as classical critical films. Europhys. Lett. 95, 66007 (2011). https://doi.org/10.1209/0295-5075/95/66007

    Article  ADS  Google Scholar 

  90. A. Gambassi, A. Silva, Large deviations and universality in quantum quenches. Phys. Rev. Lett. 109, 250602 (2012). https://doi.org/10.1103/PhysRevLett.109.250602

    Article  ADS  Google Scholar 

  91. S. Sotiriadis, A. Gambassi, A. Silva, Statistics of the work done by splitting a one-dimensional quasicondensate. Phys. Rev. E 87, 052129 (2013). https://doi.org/10.1103/PhysRevE.87.052129

    Article  ADS  Google Scholar 

  92. P. Smacchia, A. Silva, Work distribution and edge singularities for generic time-dependent protocols in extended systems. Phys. Rev. E 88, 042109 (2013). https://doi.org/10.1103/PhysRevE.88.042109

    Article  ADS  Google Scholar 

  93. S. Bhattacharjee, U. Bhattacharya, A. Dutta, Role of topology on the work distribution function of a quenched haldane model of graphene. Phys. Rev. B 98, 104302 (2018). https://doi.org/10.1103/PhysRevB.98.104302

    Article  ADS  Google Scholar 

  94. S. Bhattacharjee, A. Dutta, Quantum thermal machines and batteries. Eur. Phys. J. B 94, 239 (2021). https://doi.org/10.1140/epjb/s10051-021-00235-3

    Article  ADS  Google Scholar 

  95. S. Deffner, S. Campbell, Quantum Thermodynamics, 2053-2571 (Morgan & Claypool Publishers, 2019) https://doi.org/10.1088/2053-2571/ab21c6

  96. S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57, 545 (2016). https://doi.org/10.1080/00107514.2016.1201896

    Article  ADS  Google Scholar 

  97. R. Kosloff, Quantum thermodynamics: A dynamical viewpoint. Entropy 15, 2100 (2013). https://doi.org/10.3390/e15062100

    Article  ADS  MathSciNet  Google Scholar 

  98. S. Bhattacharjee, U. Bhattacharya, W. Niedenzu, V. Mukherjee, A. Dutta, Quantum magnetometry using two-stroke thermal machines. New J. Phys. 22, 013024 (2020). https://doi.org/10.1088/1367-2630/ab61d6

    Article  ADS  Google Scholar 

  99. J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046 (1991). https://doi.org/10.1103/PhysRevA.43.2046

    Article  ADS  Google Scholar 

  100. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  101. M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994). https://doi.org/10.1103/PhysRevE.50.888

    Article  ADS  Google Scholar 

  102. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011). https://doi.org/10.1103/RevModPhys.83.863

    Article  ADS  Google Scholar 

  103. T. Kinoshita, T. Wenger, D.S. Weiss, A quantum newton’s cradle. Nature 440, 900 (2006)

    Article  ADS  Google Scholar 

  104. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007). https://doi.org/10.1103/PhysRevLett.98.050405

    Article  ADS  Google Scholar 

  105. A. Russomanno, A. Silva, G.E. Santoro, Periodic steady regime and interference in a periodically driven quantum system. Phys. Rev. Lett. 109, 257201 (2012). https://doi.org/10.1103/PhysRevLett.109.257201

  106. A. Lazarides, A. Das, R. Moessner, Equilibrium states of generic quantum systems subject to periodic driving. Phys. Rev. E 90, 012110 (2014). https://doi.org/10.1103/PhysRevE.90.012110

    Article  ADS  Google Scholar 

  107. T. Ishii, T. Kuwahara, T. Mori, N. Hatano, Heating in integrable time-periodic systems. Phys. Rev. Lett. 120, 220602 (2018). https://doi.org/10.1103/PhysRevLett.120.220602

    Article  ADS  Google Scholar 

  108. U. Bhattacharya, S. Maity, U. Banik, A. Dutta, Exact results for the floquet coin toss for driven integrable models. Phys. Rev. B 97, 184308 (2018). https://doi.org/10.1103/PhysRevB.97.184308

    Article  ADS  Google Scholar 

  109. S. Nandy, A. Sen, D. Sen, Aperiodically driven integrable systems and their emergent steady states. Phys. Rev. X 7, 031034 (2017). https://doi.org/10.1103/PhysRevX.7.031034

  110. S. Maity, U. Bhattacharya, A. Dutta, Fate of current, residual energy, and entanglement entropy in aperiodic driving of one-dimensional jordan-wigner integrable models. Phys. Rev. B 98, 064305 (2018). https://doi.org/10.1103/PhysRevB.98.064305

    Article  ADS  Google Scholar 

  111. S. Maity, U. Bhattacharya, A. Dutta, D. Sen, Fibonacci steady states in a driven integrable quantum system. Phys. Rev. B 99, 020306 (2019). https://doi.org/10.1103/PhysRevB.99.020306

    Article  ADS  Google Scholar 

  112. S. Bhattacharjee, S. Bandyopadhyay, A. Dutta, Quasilocalization dynamics in a fibonacci quantum rotor. Phys. Rev. A 106, 022206 (2022). https://doi.org/10.1103/PhysRevA.106.022206

    Article  ADS  MathSciNet  Google Scholar 

  113. S. Nandy, A. Sen, D. Sen, Steady states of a quasiperiodically driven integrable system. Phys. Rev. B 98, 245144 (2018). https://doi.org/10.1103/PhysRevB.98.245144

    Article  ADS  Google Scholar 

  114. S. Maity, S. Bandyopadhyay, S. Bhattacharjee, A. Dutta, Growth of mutual information in a quenched one-dimensional open quantum many-body system. Phys. Rev. B 101, 180301 (2020). https://doi.org/10.1103/PhysRevB.101.180301

    Article  ADS  Google Scholar 

  115. P. Calabrese, J. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech: Theory and Experiment, P04010 (2005)

  116. S. Bhattacharjee, S. Bandyopadhyay, A. Polkovnikov, Sharp detection of the onset of floquet heating using eigenstate sensitivity (2024), ar**v:2403.08490 [cond-mat.stat-mech]

Download references

Acknowledgements

We acknowledge everyone with whom Professor Amit Dutta has actively collaborated with in his scientific journey. Particularly, we thank Bikas K. Chakraborty, Jayanta K Bhattacharjee, Peter Fulde, Roderich Moessner, Diptiman Sen, Anatoli Polkovnikov, Krishnendu Sengupta, Amit Agarwal, Adhip Agarwalla, Rajiv R. P. Singh, Sayak Dasgupta, Manisha Thakurathi, Sei Suzuki, Debanjan Chowdhury, Uma Divakaran, Victor Mukherjee, Sthitadhi Roy, Aavishkar A Patel, Guiseppe E. Santoro, Parongama Sen, Angelo Russomanno, Gabriel Aeppli, Lars Fritz, Ayoti Patra, Sougato Mardanya, R. Loganayagam, Rashi Sachdeva and Anirban Dutta. We also thank and acknowledge countless students with whom he has interacted in his lifetime. The work of Shraddha Sharma is supported by the Department of Science and Technology, Government of India under grant registration no.: IFA23-PH303 (INSPIRE Faculty Award). Souvik Bandyopadhyay acknowledges AFOSR, USA and Boston university for support. ICFO group acknowledges support from: ERC AdG NOQIA; MCIN/AEI (PGC2018\(-\)0910.13039/501100011033, CEX2019-000910- S/10.13039/501100011033, Plan National FIDEUA PID2019-106901GB-I00, Plan National STAMEENA PID2022-139099NB-I00 project funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR” (PRTR-C17.I1), FPI); QUANTERA MAQS PCI2019-111828-2); QUANTERA DYNAMITE PCI2022-132919 (QuantERA II Programme co-funded by European Union’s Horizon 2020 program under Grant Agreement No 101017733), Ministry of Economic Affairs and Digital Transformation of the Spanish Government through the QUANTUM ENIA project call - Quantum Spain project, and by the European Union through the Recovery, Transformation, and Resilience Plan - NextGenerationEU within the framework of the Digital Spain 2026 Agenda; Fundació Cellex; Fundació Mir-Puig; Generalitat de Catalunya (European Social Fund FEDER and CERCA program, AGAUR Grant No. 2021 SGR 01452, QuantumCAT U16-011424, co-funded by ERDF Operational Program of Catalonia 2014-2020); Barcelona Supercomputing Center MareNostrum (FI-2023-1-0013); EU Quantum Flagship (PASQuanS2.1, 101113690); EU Horizon 2020 FET-OPEN OPTOlogic (Grant No 899794); EU Horizon Europe Program (Grant Agreement 101080086 - NeQST), ICFO Internal “QuantumGaudi” project; European Union’s Horizon 2020 program under the Marie Sklodowska-Curie grant agreement No 847648; “La Caixa” Junior Leaders fellowships, La Caixa” Foundation (ID 100010434): CF/BQ/PR23/11980043. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union, European Commission, European Climate, Infrastructure and Environment Executive Agency (CINEA), or any other granting authority. Neither the European Union nor any granting authority can be held responsible for them. U.B. is also grateful for the financial support of the IBM Quantum Researcher Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Shraddha Sharma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Nag, T., Rajak, A. et al. Unquenched—a memoir on non-equilibrium dynamics of quantum many-body systems: honoring Amit Dutta. Eur. Phys. J. B 97, 102 (2024). https://doi.org/10.1140/epjb/s10051-024-00740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00740-1

Navigation