Log in

Ion swee** in conducting dielectric materials

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Conductivity-related low-frequency dielectric losses frequently obscure loss peaks arising from dipole relaxations in dielectric materials. The application of moderately large electrical fields to ion containing liquids and solids in combination with temperature cycling enables one to reduce the contribution of conductivity to dielectric loss spectra significantly. Details of this electrical cleaning method are given. Its application is demonstrated and discussed for a diverse array of materials ranging from polymeric and small-molecule supercooled liquids to hydrated proteins and ice-like crystals. The suppression of conductivity-related losses allows one to gain insights into the low-frequency dynamics of such materials. The mobility of the ionic impurities at the base temperature and at the ‘cleaning’ temperature are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hartshorn, J.V.L. Parry, L. Essen, Proc. Phys. Soc. B 68, 422 (1955)

    Article  ADS  Google Scholar 

  2. G. Brière, N. Felici, C. R. Hebd. Sc. Acad. Sci. 259, 3237 (1964)

    Google Scholar 

  3. A.W. Bright, B. Makin, J. Mat. Sci. 2, 184 (1967)

    Article  ADS  Google Scholar 

  4. W.F. Schmidt, in Electrical Insulating Liquids edited by R. Bartnikas (ASTM, Philadelphia, 1994), p. 164

    Google Scholar 

  5. H. Gränicher, C. Jaccard, P. Scherrer, A. Steinemann, Discussions Faraday Soc. 23, 50 (1957)

    Article  Google Scholar 

  6. V.F. Petrenko, R.W. Whitworth, Physics of Ice (University Press, Oxford, 1999), see in particular Chapter 5

    Google Scholar 

  7. H.H. Rogers, S. Evans, J.H. Johnson, J. Electrochem. Soc. 111, 701 (1964)

    Article  Google Scholar 

  8. L. Hartshorn, E. Rushton, Trans. Liverpool Eng. Soc. 67, 111 (1946)

    Google Scholar 

  9. Here ionic liquids and melts are well-known representatives. For an example of an almost hidden relaxation process see Figure 3 in A. Pimenov, P. Lunkenheimer, M. Nicklas, R. Böhmer, A. Loidl, C.A. Angell, J. Non-Cryst. Solids 220, 83 (1997)

    Article  Google Scholar 

  10. E.N. Boulos, A.V. Lesikar, C.T. Moynihan, J. Non-Cryst. Solids 45, 419 (1981)

    Article  ADS  Google Scholar 

  11. J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl, R. Böhmer, J. Phys.: Condens. Matter 8, 4673 (1996)

    Article  ADS  Google Scholar 

  12. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002); the latter case has been discussed under the name ‘colossal dielectric constant’

    Article  ADS  Google Scholar 

  13. Layered capacitors can also be advantageous when it is desired to create a well-defined electrochemical situation at the electrode interface, see e. g., S. Mounier, P. Sixou, in Physics of Ice edited by N. Riehl, B. Bullemer, H. Engelhardt (Plenum, New York, 1969), p. 562 or reference [5]

    Google Scholar 

  14. A.M. Woodward, E.A. Davies, S. Denyer, C. Olliff, D.B. Kell, Bioelectrochemistry 51, 13 (2000)

    Article  Google Scholar 

  15. D.Y. Wang, A.S. Nowick, J. Phys. Chem. Solids 44, 639 (1983)

    Article  ADS  Google Scholar 

  16. A. Kessler, Physica Status Solidi (a) 90, 715 (1985)

    Article  ADS  Google Scholar 

  17. F. Pizzitutti, F. Bruni, Rev. Sci. Instrum. 72, 2502 (2001)

    Article  ADS  Google Scholar 

  18. L.W. Wang, Q. Wang, C.X. Li, X.J. Niu, G. Sun, K.Q. Lu, Phys. Rev. B 76, 155437 (2007)

    Article  ADS  Google Scholar 

  19. J. Swenson, H. Jansson, J. Hedström, R. Bergman, J. Phys.: Condens. Matter 19, 205109 (2007)

    Article  ADS  Google Scholar 

  20. J. Vanderschueren, J. Gasio, in Thermally Stimulated Relaxation in Solids edited by P. Bräunlich (Springer, Berlin, 1979), p. 135

    Google Scholar 

  21. R. Richert, Eur. Phys. J. B 68, 197 (2009)

    Article  ADS  Google Scholar 

  22. S. Osaki, S. Uemura, Y. Ishida, J. Polym. Sci., Polym. Phys. Ed. 9, 585 (1971)

    ADS  Google Scholar 

  23. K. Se, K. Adachi, T. Kotaka, Polymer J. 13, 1009 (1981)

    Article  Google Scholar 

  24. P. Cebe, D.T. Grubb, Macromolecules 17, 1374 (1984)

    Article  ADS  Google Scholar 

  25. Y. Oka, N. Koizumi, Polym. J. 14, 869 (1982)

    Article  Google Scholar 

  26. E.J.C. Kellar, G. Williams, V. Grongauz, S. Yitzchaik, J. Mat. Chem. 1, 331 (1991)

    Article  Google Scholar 

  27. A. Nazemi, G. Williams, G.S. Attard, F.E. Karasz, Polym. Adv. Technol. 3, 157 (1992)

    Article  Google Scholar 

  28. M.E. Baur, H. Stockmayer, J. Chem. Phys. 43, 4319 (1965)

    Article  ADS  Google Scholar 

  29. D. Porschke, Annu. Rev. Phys. Chem. 36, 159 (1985)

    Article  ADS  Google Scholar 

  30. E. Neumann, Prog. Biophys. Molec. Biol. 47, 197 (1986)

    Article  Google Scholar 

  31. M.E. Davis, J.A. McCammon, Chem. Rev. 90, 509 (1990)

    Article  Google Scholar 

  32. H.J. Plumley, Phys. Rev. 59, 200 (1941)

    Article  ADS  Google Scholar 

  33. We used a sapphire/invar cell analogous to that described by H. Wagner, R. Richert, J. Phys. Chem. B 103, 4071 (1999)

    Article  Google Scholar 

  34. C. Gainaru, R. Böhmer, Macromolecules 42, 7616 (2009)

    Article  ADS  Google Scholar 

  35. C. Gainaru, W. Hiller, R. Böhmer, Macromolecules 43, 1907 (2010)

    Article  ADS  Google Scholar 

  36. The degree of self-dissociation depends on the polarity of the liquid but seems insignificant for non-associating liquids, for a brief survey see N. Felici, Direct Current 2, 90 (1971)

    Google Scholar 

  37. A. Schönhals, F. Kremer, in Broadband dielectric spectroscopy edited by F. Kremer, A. Schönhals (Springer, Berlin, 2002), p. 35. For electrode polarization effects see in particular Chapter 3.4.2 and the references cited therein

    Google Scholar 

  38. F. Qi, K.U. Schug, A. Dös, S. Dupont, R. Böhmer, H. Sillescu, H. Kolshorn, H. Zimmermann, J. Chem. Phys. 112, 9455 (2000)

    Article  ADS  Google Scholar 

  39. Y. Yomogida, A. Minoguchi, R. Nozaki, Phys. Rev. E 73, 041510 (2006)

    Article  ADS  Google Scholar 

  40. C. Gainaru, O. Lips, A. Troshagina, R. Kahlau, A. Brodin, F. Fujara, E.A.R Rössler, J. Chem. Phys. 128, 174505 (2008). In the mean-time the low-frequency features have been found for a number of liquids. It is probably caused by translational motion additionally detected by proton NMR, E. Rössler (private communication, 2010)

    Article  ADS  Google Scholar 

  41. C.J.F Böttcher, P. Bordewijk, Theory of elctric polarization Vol. II: Dielectrics in time-dependent fields (Elsevier, Amsterdam, 1978)

    Google Scholar 

  42. See, e.g., M. Wübbenhorst, J. van Turnhout, J. Non-Cryst. Solids 305, 40 (2002), and references cited therein

    Article  Google Scholar 

  43. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea, London, 1983), p. 54. The transformation program involves an extrapolation of the data by one decade on either side of the experimental frequency range

    Google Scholar 

  44. H. Jansson, R. Bergman, J. Swenson, Phys. Rev. Lett. 104, 017802 (2010)

    Article  ADS  Google Scholar 

  45. R. Bergman, H. Jansson, J. Swenson, J. Chem. Phys. 132, 044504 (2010)

    Article  ADS  Google Scholar 

  46. L.M. Wang, R. Richert, J. Chem. Phys. 121, 11170 (2004)

    Article  ADS  Google Scholar 

  47. B. Jakobsen, C. Maggi, T. Christensen, J.C. Dyre, J. Chem. Phys. 129, 184502 (2008)

    Article  ADS  Google Scholar 

  48. C. Gainaru, R. Böhmer, J. Non-Cryst. Solids 356, 542 (2010)

    Article  ADS  Google Scholar 

  49. M.A. Floriano, C.A. Angell, J. Chem. Phys. 91, 2537 (1989)

    Article  ADS  Google Scholar 

  50. N.E. Israeloff, T.S. Grigera, Europhys. Lett. 43, 308 (1998)

    Article  ADS  Google Scholar 

  51. G. Strobl, The physics of polymers (Springer, Berlin, 1997)

    Google Scholar 

  52. For a more detailed discussion of the extent of coupling of structural and conductivity relaxations in various substances, see C.A. Angell, Chem. Rev. 90, 523 (1990)

    Article  Google Scholar 

  53. J. van Turnhout, Thermally stimulated discharge of polymer electrets (Elsevier, Amsterdam, 1975)

    Google Scholar 

  54. J.R. Sangoro, A. Serghei, S. Naumov, P. Galvosas, J. Kärger, C. Wespe, F. Bordusa, F. Kremer, Phys. Rev. E 77, 051202 (2008)

    Article  ADS  Google Scholar 

  55. C. Gainaru, A. Fillmer, R. Böhmer, J. Phys. Chem. B 113, 12628 (2009)

    Article  Google Scholar 

  56. H. Nelson, A. Nowaczyk, C. Gainaru, S. Schildmann, B. Geil, R. Böhmer, Phys. Rev. B (submitted)

  57. O. Yamamuro, T. Matsuo, H. Suga, J. Inclusion Phenom. 8, 33 (1990)

    Article  Google Scholar 

  58. T. Blochowicz, C. Gainaru, P. Medick, C. Tschirwitz, E.A. Rössler, J. Chem. Phys. 124, 134503 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gainaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gainaru, C., Böhmer, R. & Williams, G. Ion swee** in conducting dielectric materials. Eur. Phys. J. B 75, 209–216 (2010). https://doi.org/10.1140/epjb/e2010-00142-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00142-2

Keywords

Navigation