Log in

Lattice dynamics of Eu1-xYxMnO3 (0 ≤ x ≤ 0.5)

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A systematic and detailed study of Raman and infrared active lattice excitations in the orthorhombic multiferroic manganite Eu1−xYxMnO3 (0 ≤ x ≤ 0.5) was carried out at room temperature. For the infrared active phonon modes the eigenfrequencies, dam** constants and oscillator strengths were analyzed by Fourier-Transform Infrared Spectroscopy in the far infrared frequency range. For the Raman active phonons the same analysis for eigenfrequencies and dam** constants was carried out using Raman spectroscopy in the range from 200 cm−1 to 700 cm−1. Y do** leads to mode-dependent phonon frequency shifts up to 8%. These are interpreted in terms of the interplay between the decrease of the reduced ion masses and the axis-dependent change of bond lengths. The latter leads to a bond softening along the a-axis and a strengthening along the c-axis, for which the highest phonon frequency increase is observed. The application of both Raman and Infrared Spectroscopy gives us sensitivity not only to symmetry properties via the selection rules but also to the involvement of different ion types within the unit cell. It is clearly shown that the disorder induced effects are of minor impact on the lattice properties and solely detected on the rare earth sites. The MnO6 octahedra remain unaffected and show the same behavior as in the stochiometric RMnO3 making Eu1−xYxMnO3 an excellent model system for a quasi-continuous fine-tuning of the lattice parameters relevant for the appearance of multiferroicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Article  Google Scholar 

  2. M. Fiebig, J. Phys. D 38, R123 (2005)

    Article  ADS  Google Scholar 

  3. Y. Tokura, J. Magn. Magn. Mater. 310, 1145 (2007)

    Article  ADS  Google Scholar 

  4. S.W. Cheong, M. Mostovoy, Nature Materials 6, 13 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. T. Kimura, Annual Review of Materials Research 37, 387 (2007)

    Article  Google Scholar 

  6. J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V.Y. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. B 75, 035118 (2007)

    Article  ADS  Google Scholar 

  7. A. Pimenov, A. Loidl, A.A. Mukhin, V.D. Travkin, V.Y. Ivanov, A.M. Balbahov, Phys. Rev. B 77, 014438 (2008)

    Article  ADS  Google Scholar 

  8. V.Y. Ivanov, A.A. Mukhin, V.D. Travkin, A.S. Prokhorov, Y.F. Popov, A.M. Kadomtseva, G.P. Vorob’ev, K.I. Kamilov, A.M. Balbashov, Phys. Status Solidi B 243, 107 (2006)

    Article  ADS  Google Scholar 

  9. T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. Tokura, Phys. Rev. B 68, R060403 (2003)

    Article  ADS  Google Scholar 

  10. A.M. Balbashov, S.G. Karabashev, Y.M. Mukovskiy, S.A. Zverkov, J. Crystal Growth 167, 365 (1996)

    Article  ADS  Google Scholar 

  11. M.N. Iliev, M.V. Abrashev, J. Raman Spectrosc. 32, 805 (2001)

    Article  ADS  Google Scholar 

  12. I.G. Siny, R.S. Katiyar, A.S. Bhalla, J. Raman Spectrosc. 29, 385 (1998)

    Article  ADS  Google Scholar 

  13. I.S. Smirnova, Physica B: Condensed Matter 262, 247 (1999)

    Article  ADS  Google Scholar 

  14. M.N. Iliev, M.V. Abrashev, H.-G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Phys. Rev. B 57, 2872 (1998)

    Article  ADS  Google Scholar 

  15. M.N. Iliev, M.V. Abrashev, J. Laverdiere, S. Jandl, M.M. Gospodinov, Y.-Q. Wang, Y.-Y. Sun, Phys. Rev. B 73, 064302 (2006)

    Article  ADS  Google Scholar 

  16. M.N. Iliev, V.G. Hadjiev, A.P. Litvinchuk, F. Yen, Y.-Q. Wang, Y.Y. Sun, S. Jandl, J. Laverdiere, V.N. Popov, M.M. Gospodinov, Phys. Rev. B 75 (2007)

  17. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  MATH  ADS  Google Scholar 

  18. D.L. Rousseau, S.P.S. Porto, Phys. Rev. Lett. 20, 1354 (1968)

    Article  ADS  Google Scholar 

  19. A. Kuzmenko, RefFIT, University of Geneva (2009), URL http://optics.unige.ch/alexey/reffit.html

  20. M. Schmidt, C. Kant, T. Rudolf, F. Mayr, A.A. Mukhin, A.M. Balbashov, J. Deisenhofer, A. Loidl, Eur. Phys. J. B 71, 411 (2009)

    Article  Google Scholar 

  21. C.T. Chen, B.N. Lin, Y.Y. Hsu, J.D. Liao, W.H. Cheng, C.Y. Lin, H.C. Ku, J.F. Lee, L.Y. Jang, D.G. Liu, Phys. Rev. B 67, 214424 (2003)

    Article  ADS  Google Scholar 

  22. Y. Takahashi, Y. Yamasaki, N. Kida, Y. Kaneko, T. Arima, R. Shimano, Y. Tokura, Phys. Rev. B 79, 214431 (2009)

    Article  ADS  Google Scholar 

  23. A. Pimenov, T. Rudolf, F. Mayr, A. Loidl, A.A. Mukhin, A.M. Balbashov, Phys. Rev. B 74, 100403 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Issing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issing, S., Fuchs, F., Ziereis, C. et al. Lattice dynamics of Eu1-xYxMnO3 (0 ≤ x ≤ 0.5). Eur. Phys. J. B 73, 353–360 (2010). https://doi.org/10.1140/epjb/e2010-00009-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00009-6

Keywords

Navigation