Log in

Drastic events make evolving networks

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Co-authorship networks of neighbouring scientific disciplines, i.e. granular (G) media and networks (N) are studied in order to observe drastic structural changes in evolving networks. The data is taken from ar**ves. The system is described as coupled networks. By considering the 1995–2005 time interval and scanning the author-article network evolution with a mobile time window, we focus on the properties of the links, as well as on the time evolution of the nodes. They can be in three states, N, G or multi-disciplinary (M). This leads to drastic jumps in a so-called order parameter, i.e. the link proportion of a given type, forming the main island, that reminds of features appearing at percolation and during metastable (aggregation-desaggregation) processes. The data analysis also focuses on the way different kinds (N, G or M) of authors collaborate, and on the kind of the resulting collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  • R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, 2004)

  • S.-M. Yoon, K. Kim, e-print ar**v:physics/0503017

  • R.J. Williams, N.D. Martinez, Nature 404, 180 (2000)

    Article  ADS  Google Scholar 

  • A. Barrat, M. Barthelemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)

    Article  ADS  Google Scholar 

  • M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • M.E.J. Newman, D.J. Watts, S.H. Strogatz, Proc. Natl. Acad. Sci. USA 99, 2566 (2002)

    Article  MATH  ADS  Google Scholar 

  • A.L. Barabási, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, T. Vicsek, Physica A 311, 590 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • J.J. Ramasco, S.N. Dorogovtsev, R. Pastor-Satorras, Phys. Rev. E 70, 036106 (2004)

    Article  ADS  Google Scholar 

  • E. Bruckner, W. Ebeling, A. Scharnhorst, Scientometrics 18, 21 (1990)

    Article  Google Scholar 

  • J.A. Holyst, K. Kacperski, F. Schweitzer, Ann. Rev. Comput. Phys. 9, 253 (2001)

    Article  Google Scholar 

  • F.Y. Wu, Phys. Rev. Lett. 22, 1174 (1969)

    Article  ADS  Google Scholar 

  • R.A. Blythe, J. Phys.: Conf. Ser. 40, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor and Francis, London, 1994)

  • H. Auradou, M. Zei, E. Bouchaud, Eur. Phys. J. B 44, 365 (2005)

    Article  ADS  Google Scholar 

  • C.J. Ellison, S.D. Kim, D.B. Hall, J.M. Torkelson, Eur. Phys. J. E 8, 155 (2002)

    Article  Google Scholar 

  • J. Rubi, A. Gadomski, Physica A 326, 333 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • E.g. some “network papers" may not focus on complex networks, such as The response function of a sphere in a viscoelastic two-fluid medium by Levine and Lubensky (Phys. Rev. E 63, 041510 (2001)) which focuses on microrheology of polymer networks

    Google Scholar 

  • R. Lambiotte, M. Ausloos, Phys. Rev. E 72, 066117 (2005)

    Article  ADS  Google Scholar 

  • M.E.J. Newman, Phys. Rev. E 64, 016132 (2001)

    Article  ADS  Google Scholar 

  • M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  • M. Girvan , M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • However, there are notable exceptions, such as the triplet made by (F. Coppex, M. Droz, A. Lipowski) who work together on both subjects (see ar**v:q-bio.PE/0312030 and ar**v:cond-mat/0205058 for instance), and form a small island

  • Noise is intrinsic to this sort of data as anyone having put a paper on the arxives knows

  • It can be observed from Figure [SEE TEXT]b that the number of nodes of type N is about 140 and G ca. 60, before event (2), and remains approximately the same after event (2), but since the island (I=2) is essentially made of G, the proportion of N in the main island falls to 0.40 (Fig. [SEE TEXT]a) after the event

  • M. Ausloos, R. Lambiotte, Phys. Rev. E 73, 11105 (2006)

    Article  ADS  Google Scholar 

  • E.A. Variano, J.H. McKoy, H. Lipson,Phys. Rev. Lett. 92, 188701 (2004)

    Article  ADS  Google Scholar 

  • R. Lambiotte, M. Ausloos, e-print ar**v:physics/0703266

  • G. Palla, A.-L. Barabási, T. Vicsek, Nature 446, 664 (2007)

    Article  ADS  Google Scholar 

  • R. Lambiotte, M. Ausloos, J.A. Holyst, Phys. Rev. E 75, 030101(R) (2007)

    Article  ADS  Google Scholar 

  • http://www.visone.de/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ausloos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ausloos, M., Lambiotte, R. Drastic events make evolving networks. Eur. Phys. J. B 57, 89–94 (2007). https://doi.org/10.1140/epjb/e2007-00159-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2007-00159-6

PACS.

Navigation