Log in

Measurements of the flux-weighted yields for (γ, αXn) reactions on molybdenum and niobium

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Flux-weighted average yields for (γ, αXn) reactions on molybdenum and niobium nuclei were determined experimentally using bremsstrahlung with end-point energies of 20, 40, and 55 MeV. The measurements were carried out by the activation method in combination with semiconductor γ-spectrometry. The experimental flux-weighted average yields were compared to the theoretical values obtained with the program code TALYS 1.96 based on the nucleus collective model. Reactions (γ, αn) were studied below the Coulomb barrier and above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: If necessary, we are happy to provide the measurement files upon request.]

References

  1. International digital nuclear reaction database: the IAEA Nuclear Data Section (http://www-nds.iaea.org/exfor). Accessed 25 May 2023

  2. A.J. Koning, D. Rochman, Nucl. Data Sheets (2012). https://doi.org/10.1016/j.nds.2012.11.002

    Article  Google Scholar 

  3. S.A. Karamian Phys. Atom. Nucl. (2014) https://doi.org/10.1134/S1063778814110040

  4. A.R. Balabekyan, N.A. Demekhina, E. Melyan et al., J. Contemp. Phys. (2020). https://doi.org/10.3103/S1068337220010016

    Article  Google Scholar 

  5. V.A. Zheltonozhsky, M.V. Zheltonozhskaya, A.M. Savrasov et al., Phys. Part. Nucl. Lett. (2021). https://doi.org/10.1134/S1547477121030134

    Article  Google Scholar 

  6. B.S. Ishkhanov, I.M. Kapitonov, Phys. Usp. (2021). https://doi.org/10.3367/UFNe.2020.02.038725

    Article  Google Scholar 

  7. R.Ö. Akyüz, S. Fallieros, Phys. Rev. Lett. (1971). https://doi.org/10.1103/PhysRevLett.27.1016

    Article  Google Scholar 

  8. H. Morinaga, Phys. Rev. (1955). https://doi.org/10.1103/PhysRev.97.444

    Article  Google Scholar 

  9. A.N. Ermakov, B.S. Ishkhanov, A.N. Kamanin et al., Instr. Exp. Techn. (2018). https://doi.org/10.1134/S0020441218020136

    Article  Google Scholar 

  10. S. Agostinelli, J. Allison, K. Amako et al., Nucl. Instr. Meth. Phys. Res. A (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  11. L. Brualla, M. Rodriguez, J. Sempau et al., Radiat. Oncol. (2019). https://doi.org/10.1186/s13014-018-1186-8

    Article  Google Scholar 

  12. M.V. Zheltonozhskaya, V.A. Zheltonozhsky, D.E. Myznikov et al., Bull. Rus. Acad. Sci. Phys. (2021). https://doi.org/10.3103/S1062873821100270

    Article  Google Scholar 

  13. Live Chart of Nuclides. https://www-nds.iaea.org/livechart Accessed 06 April 2023

  14. H. Beil, R. Bergère, P. Carlos et al., Nucl. Phys. A (1974). https://doi.org/10.1016/0375-9474(74)90769-6

    Article  Google Scholar 

  15. B.S. Ishkhanov, I.M. Kapitonov, A.A. Kuznetsov et al., Phys. Atom. Nucl. (2014). https://doi.org/10.1134/S106377881410007X

    Article  Google Scholar 

  16. V.A. Zheltonozhsky, A.M. Savrasov, Nucl. Instr. Meth. Phys. Res. B (2019). https://doi.org/10.1016/j.nimb.2019.06.029

    Article  Google Scholar 

  17. M. Długosz-Lisiecka, H. Bem, J. Radioanal, Nucl Chem. (2013). https://doi.org/10.1007/s10967-012-2404-8

    Article  Google Scholar 

  18. A. Gilbert, A.G.W. Cameron, Can. J. Phys. (1965). https://doi.org/10.1139/p65-139

    Article  Google Scholar 

  19. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Nucl. Phys. A (1973). https://doi.org/10.1016/0375-9474(73)90196-6

    Article  Google Scholar 

  20. A.V. Ignatyuk, K.K. Istekov and G.N. Smirenkin, Yadernaya Fizika (1979)

  21. S. Goriely, F. Tondeur, J.M. Pearson, At Data Nucl Data Tables (2001). https://doi.org/10.1006/adnd.2000.0857

    Article  Google Scholar 

  22. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C (2008). https://doi.org/10.1103/PhysRevC.78.064307

    Article  Google Scholar 

  23. S. Hilaire, M. Girod, S. Goriely, A.J. Koning, Phys. Rev. C (2012). https://doi.org/10.1103/PhysRevC.86.064317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zheltonozhskaya.

Additional information

Communicated by Navin Alahari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remizov, P.D., Zheltonozhskaya, M.V., Chernyaev, A.P. et al. Measurements of the flux-weighted yields for (γ, αXn) reactions on molybdenum and niobium. Eur. Phys. J. A 59, 141 (2023). https://doi.org/10.1140/epja/s10050-023-01055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01055-y

Navigation