Log in

Fibrinogen-Related Proteins of Gastropoda Molluscs

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Fibrinogen-related proteins (FREPs) are calcium-dependent lectins with one fibrinogen domain and one or two immunoglobulin-like domains. The FREPs of gastropod molluscs can undergo somatic diversification, which is unique among pathogen-recognizing molecules of invertebrates. The structure of the genomic regions encoding FREPs implies the possibility of alternative splicing and somatic mutagenesis. Since the discovery of FREPs in Biomphalaria glabrata, these molecules have been described in many gastropods. At least 14 subfamilies of FREPs are currently known. FREPs of different subfamilies selectively participate in the immune response to various pathogens. In particular, their role in defense reactions to trematode invasion and resistance to trematodes of particular species has been confirmed. The supposed functions of FREPs are diverse, ranging from the recognition of foreign matter to the opsonization and neutralization of pathogens. Despite the abundance of studies of FREPs, the Russian literature on this subject is scarce. The main purpose of this review is to analyze the available information on gastropod FREPs and to discuss their role among pattern recognition receptors of molluscs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Adema, C.M., Fibrinogen-related proteins (FREPs) in molluscs, Results Probl. Cell Differ., 2015, vol. 57, pp. 111–129.

    Article  CAS  PubMed  Google Scholar 

  2. Adema, C.M., and Loker, E.S., Digenean-gastropod host associations inform on aspects of specific immunity in snails, Dev. Comp. Immunol., 2015, vol. 48, no. 2, pp. 275–283. https://doi.org/10.1016/j.dci.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  3. Adema, C.M., Hertel, L.A., Miller, R.D., and Loker, E.S., A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection, PNAS, 1997, vol. 94, no. 16, pp. 8691–8696. https://doi.org/10.1073/pnas.94.16.8691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adema, C.M., Hertel, L.A., and Loker, E.S., Evidence from two planorbid snails of a complex and dedicated response to digenean (Echinostome) infection, Parasitology, 1999, vol. 119, no. 4, pp. 395–404. https://doi.org/10.1017/s0031182099004850

    Article  PubMed  Google Scholar 

  5. Adema, C.M., Hanington, P.C., Lun, C.-M., Rosenberg, G.H., Aragon, A.D., Stout, B.A., Richard, M.L., Gross, P.S., and Loker, E.S., Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes), Mol. Immunol., 2010, vol. 47, no. 4, pp. 849–860. https://doi.org/10.1016/j.molimm.2009.10.019

    Article  CAS  PubMed  Google Scholar 

  6. Adema, C.M., Hillier, L.W., Jones, C.S., Loker, E.S., Knight, M., Minx, P., et al., Whole genome analysis of a schistosomiasis-transmitting freshwater snail, Nat. Commun., 2017, vol. 8, no. 15451, pp. 1–11. https://doi.org/10.1038/ncomms15451

    Article  CAS  Google Scholar 

  7. Allan, E., Yang, L., Tennessen, J.A., and Blouin, M.S., Allelic variation in a single genomic region alters the hemolymph proteome in the snail Biomphalaria glabrata, Fish Shellfish Immunol., 2019, vol. 88, pp. 301–307. https://doi.org/10.1016/j.fsi.2019.02.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ataev, G.L. and Coustau, C., Cellular response to Echinostoma caproni infection in Biomphalaria glabrata strains selected for susceptibility/resistance, Dev. Comp. Immunol., 1999, vol. 23, no. 3, pp. 187–198. https://doi.org/10.1016/s0145-305x(99)00023-3

    Article  CAS  PubMed  Google Scholar 

  9. Ataev, G.L. and Polevchchikov, A.V., Defense reactions of Gastropod molluscs. 1. Cell reactions, Parazitologiya, 2004, vol. 38, no. 4, pp. 342–351.

    CAS  Google Scholar 

  10. Ataev, G.L., Eremina, E.E., and Polevchchikov, A.V., Defensive reactions of Gastropod molluscs. Humoral reactions, Parazitologiya, 2005, vol. 39, no. 1, pp. 3–15.

    CAS  Google Scholar 

  11. Ataev, G.L., Prokhorova, E.E., and Tokmakova, A.S., Defense reactions of pulmonate molluscs during parasitic invasion, Parazitologiya, 2020, vol. 54, no. 5, pp. 371–401. https://doi.org/10.31857/S1234567806050028

    Article  Google Scholar 

  12. Bayne, C.J., Successful parasitism of vector snail Biomphalaria glabrata by the human blood fluke (trematode) Schistosoma mansoni: A 2009 assessment, Mol. Biochem. Parasitol., 2009, vol. 165, pp. 8–18. https://doi.org/10.1016/j.molbiopara.2009.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bayne, C.J., Loker, E.S., and Yui, M.A., Interactions between the plasma-proteins of Biomphalaria glabrata (Gastropoda) and the sporocyst tegument of Schistosoma mansoni (Trematoda), Parasitology, 1986, vol. 92, no. 3, pp. 653–664. https://doi.org/10.1017/s0031182000065513

    Article  CAS  PubMed  Google Scholar 

  14. Bender, R.C., Fryer, S.E., and Bayne, C.J., Proteinase inhibitory activity in the plasma of a mollusc: evidence for the presence of a-macroglobulin in Biomphalaria glabrata, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1992, vol. 102, pp. 821–824. https://doi.org/10.1016/0305-0491(92)90086-7

    Article  CAS  Google Scholar 

  15. Bouchut, A., Roger, E., Coustau, C., Gourbal, B., and Mitta, G., Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: Potential involvement of adhesion genes, Int. J. Parasitol., 2006, vol. 36, no. 2, pp. 175–184. https://doi.org/10.1016/j.ijpara.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  16. Buchmann, K., Evolution of innate immunity: Clues from invertebrates via fish to mammals, Front. Immunol., 2014, vol. 5, p. 459. eCollection 2014https://doi.org/10.3389/fimmu.2014.00459

  17. Buddenborg, S.K., Bu, L., Zhang, S.-M., Schilkey, F.D., Mkoji, G.M., and Loker, E.S., Transcriptomic responses of Biomphalaria pfeifferi to Schistosoma mansoni: Investigation of a neglected African snail that supports more S. mansoni transmission than any other snail species, PLoS Neglected Trop. Dis., 2017, vol. 11, no. 10, p. e0005984. https://doi.org/10.1371/journal.pntd.0005984

    Article  CAS  Google Scholar 

  18. Castillo, M.G., Humphries, J.E., Mourao, M.M., Marquez, J., Gonzalez, A., and Montelongo, C.E., Biomphalaria glabrata immunity: Post-genome advances, Dev. Comp. Immunol., 2020, vol. 104, p. 103557. https://doi.org/10.1016/j.dci.2019.103557

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J.M., Cooper, D.N., Chuzhanova, N., Férec, C., and Patrinos, G.P., Gene conversion: Mechanisms, evolution and human disease, Nat. Rev. Genet., 2007, vol. 8, pp. 762–775. https://doi.org/10.1038/nrg2193

    Article  CAS  PubMed  Google Scholar 

  20. Cheng, T.C., Functional morphology and biochemistry of molluscan phagocytes, Ann. N. Y. Acad. Sci., 1975, vol. 266, pp. 343–379. https://doi.org/10.1111/j.1749-6632.1975.tb35116.x

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, T.C., and Jourdan, J., Transient cellular reaction in Biomphalaria glabrata (Mollusca) to heterotopic isografts, J. Invertebr. Pathol., 1987, vol. 49, no. 3, pp. 273–278.

    Article  Google Scholar 

  22. Connors, V.A., The schistosome—snail interaction: Factors involved in host immunodefense activation and parasite killing in susceptible and resistant Biomphalaria glabrata, in Taxonomy, Ecology and Evolution of Metazoan Parasites, Combes, C. and Jourdane, J., Eds., Perpignan: Presses Univ. de Perpignan, 2003, pp. 203–224.

    Google Scholar 

  23. Couch, L., Hertel, L.A., and Loker, E.S., Humoral response of the snail Biomphalaria glabrata to trematode infection: Observations on a circulating hemagglutinin, J. Exp. Zool., 1990, vol. 255, no. 3, pp. 340–349. https://doi.org/10.1002/jez.1402550310

    Article  CAS  PubMed  Google Scholar 

  24. Dheilly, N.M., Duval, D., Mouahid, G., Emans, R., Allienne, J.-F., Galinier, R., et al., A family of variable immunoglobulin and lectin domain containing molecules in the snail Biomphalaria glabrata, Dev. Comp. Immunol., 2015, vol. 48, no. 1, pp. 234–243. https://doi.org/10.1016/j.dci.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  25. Dinguirard, N., Cavalcanti, M.G.S., Wu, X.J., Bickham-Wright, U., Sabat, G., and Yoshino, T.P., Proteomic analysis of Biomphalaria glabrata hemocytes during in vitro encapsulation of Schistosoma mansoni sporocysts, Front. Immunol., 2018, vol. 9, p. 2773. https://doi.org/10.3389/fimmu.2018.02773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doolittle, R.F., A detailed consideration of a principal domain of vertebrate fibrinogen and its relatives, Protein Sci., 1992, vol. 1, no. 12, pp. 1563–1577. https://doi.org/10.1002/pro.5560011204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doolittle, R.F., Some important milestones in the field of blood clotting, J. Innate Immun., 2016, vol. 8, no. 1, pp. 23–29. https://doi.org/10.1159/000442470

    Article  CAS  PubMed  Google Scholar 

  28. Galinier, R., Portela, J., Mone, Y., Allienne, J.-F., Henri, H., Delbecq, S., et al., Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni, PLoS Pathog., 2013, vol. 9, no. 3, p. e1003216. https://doi.org/10.1371/journal.ppat.1003216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galinier, R., Roger, E., Mone, Y., Duval, D., Portet, A., Pinaud, S., Chaparro, C., Grunau, C., Genthon, C., Dubois, E., Rognon, A., Arancibia, N., Dejean, B., Theron, A., Gourbal, B., and Mitta, G., A multistrain approach to studying the mechanisms underlying compatibility in the interaction between Biomphalaria glabrata and Schistosoma mansoni, PLoS Neglected Trop. Dis., 2017, vol. 11, no. 3, p. e0005398. https://doi.org/10.1371/journal.pntd.0005398

    Article  Google Scholar 

  30. Gokudan, S., Muta, T., Tsuda, R., Koori, K., Kawahara, T., Seki, N., Mizunoe, Y., Wai, S.N., Iwanaga, S., and Kawabata, S., Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen, PNAS, 1999, vol. 96, no. 18, pp. 10086–10091. https://doi.org/10.1073/pnas.96.18.10086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gorbushin, A.M., Derivatives of the lectin complement pathway in Lophotrochozoa, Dev. Comp. Immunol., 2019, vol. 94, pp. 35–58. https://doi.org/10.1016/j.dci.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  32. Gorbushin, A.M. and Borisova, E.A., Lectin-like molecules in transcriptome of Littorina littorea hemocytes, Dev. Comp. Immunol., 2015, vol. 48, pp. 210–220. https://doi.org/10.1016/j.dci.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  33. Gorbushin, A.M., Panchin, Y.V., and Iakovleva, N.V., In search of the origin of FREPs: Characterization of Aplysia californica fibrinogen-related proteins, Dev. Comp. Immunol., 2010, vol. 34, pp. 465–473. https://doi.org/10.1016/j.dci.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  34. Gordy, M.A., Pila, E.A., and Hanington, P.C., The role of fibrinogen-related proteins in the gastropod immune response, Fish Shellfish Immunol., 2015, vol. 46, no. 1, pp. 39–49. https://doi.org/10.1016/j.fsi.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  35. Guillou, F., Mitta, G., Dissous, C., Pierce, R., and Coustau, C., Use of individual polymorphism to validate potential functional markers: Case of a candidate lectin (BgSel) differentially expressed in susceptible and resistant strains of Biomphalaria glabrata, Comp. Biochem. Physiol., 2004, vol. 138, pp. 175–181. https://doi.org/10.1016/j.cbpc.2004.03.010

    Article  CAS  Google Scholar 

  36. Guillou, F., Mitta, G., Galinier, R., and Coustau, C., Identification and expression of gene transcripts generated during an anti-parasitic response in Biomphalaria glabrata, Dev. Comp. Immunol., 2007, vol. 31, no. 7, pp. 657–671. https://doi.org/10.1016/j.dci.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  37. Hanington, P.C. and Zhang, S.-M., The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation, J. Innate Immun., 2011, vol. 3, p. 1727. https://doi.org/10.1159/000321882

    Article  CAS  Google Scholar 

  38. Hanington, P.C., Lun, C.-M., Adema, C.M., and Loker, E.S., Time series analysis of the transcriptional responses of Biomphalaria glabrata throughout the course of intramolluscan development of Schistosoma mansoni and Echinostoma paraensei, Int. J. Parasitol., 2010a, vol. 40, no. 7, pp. 819–831. https://doi.org/10.1016/j.ijpara.2009.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hanington, P.C., Forys, M.A., Dragoo, J.W., Zhang, S.-M., Adema, C.M., and Loker, E.S., Role for a somatically diversified lectin in resistance of an invertebrate to parasite infection, PNAS, 2010b, vol. 107, no. 49, pp. 21087–21092. https://doi.org/10.1073/pnas.1011242107

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hanington, P.C., Forys, M.A., and Loker, E.S., Somatically diversified defense factor, FREP3, is a determinant of snail resistance to Schistosome infection, PLoS Neglected Trop. Dis., 2012, vol. 6, no. 3, p. e1591. https://doi.org/10.1371/journal.pntd.0001591

    Article  CAS  Google Scholar 

  41. Hertel, L.A., Stricker, S.A., Monroy, F.P., Wilson, W.D., and Loker, E.S., Biomphalaria glabrata hemolymph lectins: Binding to bacteria, mammalian erythrocytes, and to sporocysts and rediae of Echinostoma paraensei, J. Invertebr. Pathol., 1994, vol. 64, no. 1, pp. 52–61. https://doi.org/10.1006/jipa.1994.1068

    Article  CAS  PubMed  Google Scholar 

  42. Hertel, L.A., Adema, C.M., and Loker, E.S., Differential expression of FREP genes in two strains of Biomphalaria glabrata following exposure to the digenetic trematodes Schistosoma mansoni and Echinostoma paraensei, Dev. Comp. Immunol., 2005, vol. 29, no. 4, pp. 295–303. https://doi.org/10.1016/j.dci.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  43. Huang, B., Zhang, L., Li, L., Tang, X., and Zhang, G., Highly diverse fibrinogen-related proteins in the Pacific oyster Crassostrea gigas, Fish Shellfish Immunol., 2015, vol. 43, pp. 485–490. https://doi.org/10.1016/j.fsi.2015.01.021

    Article  CAS  PubMed  Google Scholar 

  44. Janeway, C.A., Jr. and Medzhitov, R., Innate immune recognition, Annu. Rev. Immunol., 2002, vol. 20, pp. 197–216. https://doi.org/10.1146/annurev.immunol.20.083001.084359

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, Y., Loker, E.S., and Zhang, S.-M., In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabrata using RNA interference, Dev. Comp. Immunol., 2006, vol. 30, no. 10, pp. 855–866. https://doi.org/10.1016/j.dci.2005.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jourdane, J. and Cheng, T.C., The two-phase recognition process of allografts in Brazilian strain of Biomphalaria glabrata, Journal of Invertebrate Parasitology, 1987, vol. 49, no. 2, pp. 145–158. https://doi.org/10.1016/0022-2011(87)90155-8

    Article  CAS  Google Scholar 

  47. Kokryakov, V.N., Ocherki o vrozhdennom immunitete (Essays on Innate Immunity), St. Petersburg: Nauka, 2006.

  48. Kurachi, S., Song, Z., Takagaki, M., Yang, Q., Winter, H.C., Kurachi, K., et al., Sialic-acid-binding lectin from the slug Limax flavus: Cloning, expression of the polypeptide, and tissue localization, Eur. J. Biochem., 1998, vol. 254, no. 2, pp. 217–222. https://doi.org/10.1046/j.1432-1327.1998.2540217.x

    Article  CAS  PubMed  Google Scholar 

  49. Kurosawa, Y. and Hashimoto, K., The immunoglobulin superfamily: Where do invertebrate fit in?, in Advances in Comparative and Environmental Physiology, Cooper, E., Ed., Berlin: Springer, 1996, vol. 23, pp. 151–184.

    Google Scholar 

  50. Lan, Y., Sun, J., Chen, C., Sun, Y., Zhou, Y., Yang, Y., et al., Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis, Nat. Commun., 2021, vol. 12, no. 1, p. 1165. https://doi.org/10.1038/s41467-021-21450-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Larson, M.K., Bender, R.C., and Bayne, C.J., Resistance of Biomphalaria glabrata 13-16-R1 snails to Schistosoma mansoni PR1 is a function of haemocyte abundance and constitutive levels of specific transcripts in haemocytes, Int. J. Parasitol., 2014, vol. 44, no. 6, pp. 343–353. https://doi.org/10.1016/j.ijpara.2013.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leonard, P.M., Adema, C.M., Zhang, S.-M., and Loker, E.S., Structure of two FREP genes that combine IgSF and fibrinogen domains, with comments on diversity of the FREP gene family in the snail Biomphalaria glabrata, Gene, 2001, vol. 269, pp. 155–165. https://doi.org/10.1016/s0378-1119(01)00444-9

    Article  CAS  PubMed  Google Scholar 

  53. Lewis, F.A., Patterson, C.N., Knight, M., and Richards, C.S., The relationship between Schistosoma mansoni and Biomphalaria glabrata: Genetic and molecular approaches, Parasitology, 2001, vol. 123, pp. 169–179. https://doi.org/10.1017/s0031182001007831

    Article  Google Scholar 

  54. Li, D. and Graham, L.D., Epiphragmin, the major protein of epiphragm mucus from the vineyard snail, Cernuella virgata, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2007, vol. 148, no. 2, pp. 192–200. https://doi.org/10.1016/j.cbpb.2007.05.009

    Article  CAS  Google Scholar 

  55. Li, H., Hambrook, J.R., Pila, E.A., Gharamah, A.A., Fang, J., Wu, X., and Hanington, P., Coordination of humoral immune factors dictates compatibility between Schistosoma mansoni and Biomphalaria glabrata, eLife, 2020, vol. 9, p. e51708. https://doi.org/10.7554/eLife.51708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lie, K.J. and Heyneman, D., Studies on resistance in snails. 3. Tissue reaction to Echinostoma lindoense sporocysts in sensitized and resensitized Biomphalaria glabrata, J. Parasitol., 1976a, vol. 62, no. 1, pp. 51–58.

    Article  CAS  PubMed  Google Scholar 

  57. Lie, K.J. and Heyneman, D., Studies on resistance in snails. 6. Escape of Echinostoma lindoense sporocysts from encapsulation in the snail heart and subsequent loss of the host’s ability to resist by the same parasite, J. Parasitol., 1976b, vol. 62, no. 2, pp. 298–302.

    Article  CAS  PubMed  Google Scholar 

  58. Lie, K.J., Jeong, K.H., and Heyneman, D., Further characterization of acquired resistance in Biomphalaria glabrata, J. Parasitol., 1982, vol. 68, no. 4, pp. 529–531.

    Article  CAS  PubMed  Google Scholar 

  59. Lie, K.J., Jeong, K.H., and Heyneman, D., Acquired resistance in snails. Induction of resistance to Schistosoma mansoni in Biomphalaria glabrata, Int. J. Parasitol., 1983, vol. 13, no. 3, pp. 301–304.

    Article  CAS  PubMed  Google Scholar 

  60. Lockyer, A.E., Spinks, J., Kane, R.A., Hoffmann, K.F., Fitzpatrick, J.M., et al., Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni, BMC Genomics, 2008, vol. 9, p. 634. https://doi.org/10.1186/1471-2164-9-634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lockyer, A.E., Emery, A.M., Kane, R.A., Walker, A.J., Mayer, C.D., Mitta, G., Coustau, C., et al., Early differential gene expression in haemocytes from resistant and susceptible Biomphalaria glabrata strains in response to Schistosoma mansoni, PLoS One, 2012, vol. 7, no. 12, p. e51102. https://doi.org/10.1371/journal.pone.0051102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loker, E.S., Yui, M.A., Bayne, C.J., Schistosoma mansoni: Agglutination of sporocysts, and formation of gels on miracidia transforming in plasma of Biomphalaria glabrata, Exp. Parasitol., 1984, vol. 58, no. 1, pp. 56–62. https://doi.org/10.1016/0014-4894(84)90020-1

    Article  CAS  PubMed  Google Scholar 

  63. Loker, E.S., Couch, L., Hertel, L.A., Elevated agglutination titers in plasma of Biomphalaria glabrata exposed to Echinostoma paraensei: Characterization and functional relevance of a trematode-induced response, Parasitology, 1994, vol. 108, no. 1, pp. 17–26. https://doi.org/10.1017/s0031182000078471

    Article  CAS  PubMed  Google Scholar 

  64. Loker, E.S., Adema, C.M., Zhang, S.-M., and Kepler, T.B., Invertebrate immune systems—not homogeneous, not simple, not well understood, Immunol. Rev., 2004, vol. 198, pp. 10–24. https://doi.org/10.1111/j.0105-2896.2004.0117.x

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lu, L., Loker, E.S., Adema, C.M., Zhang, S.-M., and Bu, L., Genomic and transcriptional analysis of genes containing fibrinogen and IgSF domains in the schistosome vector Biomphalaria glabrata, with emphasis on the differential responses of snails susceptible or resistant to Schistosoma mansoni, PLoS Neglected Trop. Dis., 2020, vol. 14, no. 10, p. e0008780. https://doi.org/10.1371/journal.pntd.0008780

    Article  CAS  Google Scholar 

  66. Matricon-Gondran, M., and Letocart, M., Internal defenses of the snail Biomphalaria glabrata. I. Characterization of hemocytes and fixed phagocytes, J. Invertebr. Pathol., 1999, vol. 74, no. 3, pp. 224–234. https://doi.org/10.1006/jipa.1999.4876

    Article  CAS  PubMed  Google Scholar 

  67. Medzhitov, R. and Janeway, C.A., Innate Immunity: The virtues of a nonclonal system of recognition, Cell, 1997, vol. 91, no. 3, pp. 295–298. https://doi.org/10.1016/s0092-8674(00)80412-2

    Article  CAS  PubMed  Google Scholar 

  68. Middha, S. and Wang, X., Evolution and potential function of fibrinogen-like domains across twelve Drosophila species, BMC Genomics, 2008, vol. 9, p. 260. https://doi.org/10.1186/1471-2164-9-260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mitta, G., Galinier, R., Tisseyre, P., Allienne, J.-F., Girerd-Chambaz, Y., Guillou, F., et al., Gene discovery and expression analysis of immune-relevant genes from Biomphalaria glabrata hemocytes, Dev. Comp. Immunol., 2005, vol. 29, no. 5, pp. 393–407. https://doi.org/10.1016/j.dci.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  70. Mitta, G., Adema, C.M., Gourbal, B., Loker, E.S., and Theron, A., Compatibility polymorphism in snail/schistosome interactions: From field to theory to molecular mechanisms, Dev. Comp. Immunol., 2012, vol. 37, no. 1, pp. 1–8. https://doi.org/10.1016/j.dci.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  71. Mone, Y., Gourbal, B., Duval, D., Du Pasquier, L., Kieffer-Jaquinod, S., and Mitta, G., A large repertoire of parasite epitopes matched by a large repertoire of host immune receptors in an invertebrate host/parasite model, PLoS Neglected Trop. Dis., 2010, vol. 4, p. e813. https://doi.org/10.1371/journal.pntd.0000813

    Article  CAS  Google Scholar 

  72. Monroy, F.P. and Loker, E.S., Production of heterogeneous carbohydrate-binding proteins by the host snail Biomphalaria glabrata following exposure to Echinostoma paraensei and Schistosoma mansoni, J. Parasitol., 1993, vol. 79, no. 3, pp. 416–423.

    Article  CAS  PubMed  Google Scholar 

  73. Neuberger, M.S., Antibody diversification by somatic mutation: from Burnet onwards, Immunol. Cell Biol., 2008, vol. 86, no. 2, pp. 124–132. https://doi.org/10.1038/sj.icb.7100160

    Article  CAS  PubMed  Google Scholar 

  74. Newton, W.L., The inheritance of susceptibility to infection with Schistosoma mansoni in Australorbis glabratus, Exp. Parasitol., 1953, vol. 2, pp. 242–257. https://doi.org/10.1590/s0074-02762010000200007

    Article  Google Scholar 

  75. Peterson, N.A., Hokke, C.H., Deelder, A.M., and Yoshino, T.P., Glycotope analysis in miracidia and primary sporocysts of Schistosoma mansoni: Differential expression during the miracidium-to-sporocyst transformation, Int. J. Parasitol., 2009, vol. 39, pp. 1331–1344. https://doi.org/10.1016/j.ijpara.2009.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pieters, M. and Wolberg, A.S., Fibrinogen and fibrin: An illustrated review, Res. Pract. Thromb. Haemostasis, 2019, vol. 3, no. 2, pp. 161–172. https://doi.org/10.1002/rth2.12191

    Article  Google Scholar 

  77. Pila, E.A., Li, H., Hambrook, J.R., Wu, X., and Hanington, P.C., Schistosomiasis from a snail’s perspective: Advances in snail immunity, Trends of Parasitology, 2017, vol. 33, no. 11, pp. 845–857. https://doi.org/10.1016/j.pt.2017.07.006

    Article  Google Scholar 

  78. Pinaud, S., Tetreau, G., Poteaux, P., Galinier, R., Chaparro, C., et al., New insights into biomphalysin gene family diversification in the vector snail Biomphalaria glabrata, Front. Immunol., 2021, vol. 12, р. 635131. https://doi.org/10.3389/fimmu.2021.635131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Portet, A., Pinaud, S., Tetreau, G., Galinier, R., Cosseau, C., Duval, D., Grunau, C., Mitta, G., and Gourbal, B., Integrated multi-omic analyses in Biomphalaria-Schistosoma dialogue reveal the immunobiological significance of FREP-SmPoMuc interaction, Dev. Comp. Immunol., 2017, vol. 75, pp. 16–27. https://doi.org/10.1016/j.dci.2017.02.025

    Article  CAS  PubMed  Google Scholar 

  80. Portet, A., Galinier, R., Pinaud, S., Portela, J., Nowacki, F., Gourbal, B., and Duval, D., BgTEP: an antiprotease involved in innate immune sensing in Biomphalaria glabrata, Front. Immunol., 2018, vol. 9, p.1206. https://doi.org/10.3389/fimmu.2018.01206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Price, D.A. and Greenberg, M.I., Comparative aspects of FMRF-amide gene organization in molluscs, Neth. J. Zool., 1994, vol. 44, pp. 421–431.

    Article  Google Scholar 

  82. Prokhorova, E.E., Tsymbalenko, N.V., and Ataev, G.L., Expression of genes encoding defense factors in the snail Planorbarius corneus (Gastropoda, Pulmonata) infested with trematodes, Parazitologiya, 2010, vol. 44, no. 4, pp. 310–325.

    CAS  Google Scholar 

  83. Raghavan, N., Tettelin, H., Miller, A., Hostetler, J., Tallon, L., and Knight, M., Nimbus (BgI): An active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata, Int. J. Parasitol., 2007, vol. 37, pp. 1307–1318. https://doi.org/10.1016/j.ijpara.2007.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Richards, C.S., Genetics of a molluscan vector of schistosomiasis, Nature, 1970, vol. 227, pp. 806–810. https://doi.org/10.1038/227806a0

    Article  CAS  PubMed  Google Scholar 

  85. Richards, C.S. and Shade, P.C., The genetic variation of compatibility in Biomphalaria glabrata and Schistosoma mansoni, J. Parasitol., 1987, vol. 73, pp. 1146–1151.

    Article  CAS  PubMed  Google Scholar 

  86. Romero, A., Dios, S., Poisa-Beiro, L., Costa, M.M., Posada, D., Figueras, A., and Novoa, B., Individual sequence variability and functional activities of fibrinogen-related proteins (FREPs) in the Mediterranean mussel (Mytilus galloprovincialis) suggest ancient and complex immune recognition models in invertebrates, Dev. Comp. Immunol., 2011, vol. 35, pp. 334–344. https://doi.org/10.1016/j.dci.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  87. Romero, A., Aranguren, R., Moreire, R., Novoa, B., and Figueras, A., Integrated transcriptomic and functional immunological approach for assessing the invasiveness of bivalve alien species, Sci. Rep., 2019, vol. 9, p. 19879. https://doi.org/10.1038/s41598-019-56421-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Saco, A., Rey-Campos, M., Novoa, B., and Figueras, A., Transcriptomic response of mussel gills after a Vibrio splendidus infection demonstrates their role in the immune response, Front. Immunol., 2020, vol. 11, р. 615580. https://doi.org/10.3389/fimmu.2020.615580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Salamat, Z. and Sullivan, J.T., In vitro mitotic responses of the amebocyte-producing organ of Biomphalaria glabrata to extracts of Schistosoma mansoni, J. Parasitol., 2008, vol. 94, no. 5, pp. 1170–1173. https://doi.org/10.1645/GE-1554.1

    Article  PubMed  Google Scholar 

  90. Santama, N., Li, K.W., Geraerts, W.P.M., Benjamin, P.R., and Burke, J.F., Post-translational processing of the alternative neuropeptide precursor encoded by the FMRFamide gene in the pulmonate snail Lymnaea stagnalis, Eur. J. Neurosci., 1996, vol. 8, pp. 968–977. https://doi.org/10.1111/j.1460-9568.1996.tb01584.x

    Article  CAS  PubMed  Google Scholar 

  91. Schroeder, H.W. and Cavacini, L., Structure and function of immunoglobulins, J. Allergy Clin. Immunol., 2010, vol. 125, suppl. 2, pp. S41–52. https://doi.org/10.1016/j.jaci.2009.09.046

  92. Schultz, J.H., Bu, L., and Adema, C.M., Comparative immunological study of the snail Physella acuta (Hygrophila, Pulmonata) reveals shared and unique aspects of gastropod immunobiology, Mol. Immunol., 2018, vol. 101, pp. 108–119. https://doi.org/10.1016/j.molimm.2018.05.029

    Article  CAS  PubMed  Google Scholar 

  93. Schultz, J.H., Bu, L., Kamel, B., and Adema, C.M., RNA-seq: The early response of the snail Physella acuta to the digenetic trematode Echinostoma paraensei, J. Parasitol., 2020, vol. 106, no. 4, pp. 490–505. https://doi.org/10.1645/19-36

    Article  CAS  PubMed  Google Scholar 

  94. Seppälä, O., Walser, J.-C., Cereghetti, T., Seppälä, K., Salo, T., and Adema, C.M., Transcriptome profiling of Lymnaea stagnalis (Gastropoda) for ecoimmunological research, BMC Genomics, 2021, vol. 22, no. 1, p. 144. https://doi.org/10.1186/s12864-021-07428-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sire, C., Rognon, A., and Theron, A., Failure of Schistosoma mansoni to reinfect Biomphalaria glabrata snails: Acquired humoral resistance or intra-specific larval antagonism?, Parasitology, 1998, vol. 117, pp. 117–122. https://doi.org/10.1017/s0031182098002923

    Article  PubMed  Google Scholar 

  96. Sullivan, J.T., Long-term survival of heterotopic allografts of the amoebocyte-producing organ in Biomphalaria glabrata (Mollusca: Pulmonata), Trans. Am. Microsc. Soc., 1990, vol. 109, no. 1, pp. 52–60. https://doi.org/10.2307/3226593

    Article  Google Scholar 

  97. Sullivan, J.T., Richards, C.S., Joe, L.K., and Heyneman, D., Ribeiroia marini: Irradiated miracidia and induction of acquired resistance in Biomphalaria glabrata, Exp. Parasitol., 1982, vol. 53, pp. 17–25.

    Article  CAS  PubMed  Google Scholar 

  98. Sullivan, J.T., Lares, R.R., and Galvan, A.G., Schistosoma mansoni infection inhibits maturation of ovotestis allografts in Biomphalaria glabrata (Mollusca: Pulmonata), J. Parasitol., 1998, vol. 84, no. 1, pp. 82–87. https://doi.org/10.2307/3284534

    Article  CAS  PubMed  Google Scholar 

  99. Sun, S.C., Lindstrom, I., Boman, H.G., Faye, I., and Schmidt, O., Hemolin: An insect-immune protein belonging to the immunoglobulin superfamily, Science, 1990, vol. 250, pp. 1729–1932. https://doi.org/10.1016/0014-4894(82)90088-1

    Article  CAS  PubMed  Google Scholar 

  100. Tanguy, M., Gauthier-Clerc, S., Pellerin, J., Danger, J.-M., and Siah, A., The immune response of Mytilus edulis hemocytes exposed to Vibrio splendidus LGP32 strain: A transcriptomic attempt at identifying molecular actors, Fish Shellfish Immunol., 2018, vol. 74, pp. 268–280. https://doi.org/10.1016/j.fsi.2017.12.038

    Article  CAS  PubMed  Google Scholar 

  101. Tetreau, G., Pinaud, S., Portet, A., Galinier, R., Gourbal, B., and Duval, D., Specific pathogen recognition by multiple innate immune sensors in an invertebrate, Front. Immunol., 2017, vol. 8, p. 1249. https://doi.org/10.3389/fimmu.2017.01249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vasta, G.R. and Ahmed, H., Animal Lectins: A Functional View, Boca Raton: CRC Press, 2009.

    Google Scholar 

  103. Wu, X.-J., Dinguirard, N., Sabat, G., Lui, H., Gonzalez, L., Gehring, M., et al., Proteomic analysis of Biomphalaria glabrata plasma proteins with binding affinity to those expressed by early develo** larval Schistosoma mansoni, PLoS Pathog., 2017, vol. 13, no. 5, p. e1006081. https://doi.org/10.1371/journal.ppat.1006081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamada, S., Hotta, K., Yamamoto, T.S., Ueno, N., Satoh, N., and Takahashi, H., Interaction of notochord-derived fibrinogen-like protein with Notch regulates the patterning of the central nervous system of Ciona intestinalis embryos, Dev. Biol., 2009, vol. 328, pp. 1–12. https://doi.org/10.1016/j.ydbio.2008.12.037

    Article  CAS  PubMed  Google Scholar 

  105. Yang, C., Wang, L., Zhang, H., Wang, L., Huang, M., Sun, Z., Sun, Y., and Song, L., A new fibrinogen-related protein from Argopecten irradians (AiFREP-2) with broad recognition spectrum and bacteria agglutination activity, Fish Shellfish Immunol., 2014, vol. 38, pp. 221–229. https://doi.org/10.1016/j.fsi.2014.03.025

    Article  CAS  PubMed  Google Scholar 

  106. Yoshino, T.P. and Bayne, C.J., Mimicry of snail host antigens by miracidia and primary sporocysts of Schistosoma mansoni, Parasite Immunology, 1983, vol. 5, no. 3, pp. 317–328. https://doi.org/10.1111/j.1365-3024.1983.tb00747.x

    Article  CAS  PubMed  Google Scholar 

  107. Yoshino, T.P., Lodes, M.J., Rege, A.A., and Chappell, C.L., Proteinase activity in miracidia, transformation excretory-secretory products, and primary sporocysts of Schistosoma mansoni, J. Parasitol., 1993, vol. 79, no. 1, p. 23.

    Article  CAS  PubMed  Google Scholar 

  108. Zahoor, Z., Lokyer, A.E., Davies, A.J., Kirk, R.S., Emery, A.M., et al., Differences in the gene expression profiles of haemocytes from schistosome-susceptible and -resistant Biomphalaria glabrata exposed to Schistosoma mansoni excretory-secretory products, PLoS One, 2014, vol. 9, no. 3, p. e93215. https://doi.org/10.1371/journal.pone.0093215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, H., Wang, L., Song, L., Song, X., Wang, B., Mu, C., et al., A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor, Fish Shellfish Immunol., 2009, vol. 26, no. 1, pp. 56–64. https://doi.org/10.1016/j.fsi.2008.07.019

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, S.-M., and Loker, E.S., The FREP gene family in the snail Biomphalaria glabrata: Additional members, and evidence consistent with alternative splicing and FREP retrosequences, Dev. Comp. Immunol., 2003, vol. 27, pp. 175–187. https://doi.org/10.1016/s0145-305x(02)00091-5

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, S.-M., and Loker, E.S., Representation of an immune responsive gene family encoding fibrinogen-related proteins in the freshwater mollusc Biomphalaria glabrata, an intermediate host for Schistosoma mansoni, Gene, 2004, vol. 341, pp. 255–266. https://doi.org/10.1016/j.gene.2004.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, S.-M., Leonard, P.M., Adema, C.M., and Loker, E.S., Parasite-responsive IgSF members in the snail Biomphalaria glabrata: Characterization of novel genes with tandemly arranged IgSF domains and a fibrinogen domain, Immunogenetics, 2001, vol. 53, pp. 684–694. https://doi.org/10.1007/s00251-001-0386-8

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, S.-M., Adema, C.M., Kepler, T.B., and Loker, E.S., Diversification of Ig superfamily genes in an invertebrate, Science, 2004, vol. 305, pp. 251–254. https://doi.org/10.1126/science.1088069

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, S.-M., Zeng, Y., and Loker, E.S., Expression profiling and binding properties of fibrinogen-related proteins (FREPs), plasma proteins from the schistosome snail host Biomphalaria glabrata, Innate Immun., 2008, vol. 14, no. 3, pp. 175–189. https://doi.org/10.1177/1753425908093800

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out with financial support from the Ministry Education of the Russian Federation (project No. VRFY-2023-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Prokhorova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Mittova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorova, E.E., Ataev, G.L. Fibrinogen-Related Proteins of Gastropoda Molluscs. Biol Bull Rev 13 (Suppl 2), S184–S198 (2023). https://doi.org/10.1134/S2079086423080091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423080091

Keywords:

Navigation